Physical World
A wire of length $$L$$ and mass per unit length $$6.0\times 10^{-3}kgm^{-1}$$ is put under tension of $$540\ N$$. Two consecutive frequencies that it resonates at are: $$420\ Hz$$ and $$490\ Hz$$. Then $$L$$ in meters is:
A single pulse, given by $$ h(x-5.0 t), $$ is shown in Fig. $$ 16-45 $$ for $$ t=0 . $$ The scale of the vertical axis is set by $$ h_{s}=2 . $$ Here $$ x $$ is in centimeters and $$ t $$ is in seconds.What is the speed of travel of the pulse?
comparing with equation $$y=h(x-vt)$$
here $$v$$ is the speed of the wave.
we see that the speed of the wave given by a function with argument $$ x-5.0 t $$ (where $$ x $$ is in centimeters and $$ t $$ is in seconds)must be $$ 5.0 \mathrm{cm} / \mathrm{s} $$
A wire of length $$L$$ and mass per unit length $$6.0\times 10^{-3}kgm^{-1}$$ is put under tension of $$540\ N$$. Two consecutive frequencies that it resonates at are: $$420\ Hz$$ and $$490\ Hz$$. Then $$L$$ in meters is:
If a progressive wave is represented as $$y=2\sin \pi \begin{pmatrix}\dfrac{t}{2}-\dfrac{x}{4}\end{pmatrix}$$ where x is in metre and t is in second, then the distance travelled by the wave in 5 s is
The dimensional formula of magnetic flux is :
Two stings A and B of same material are stretched by same tension. The radius of the string A is double the radius of string B. Transverse wave travels on string A with speed '$$V_A$$' and on string B with speed '$$V_B$$'. The ratio $$\dfrac{V_A}{V_B}$$ is
A travelling wave is produced on a long horizontal string by vibrating an end up and down sinusoidally. The amplitude of vibration is $$1.0cm$$ and the displacement becomes zero $$200$$ times per second. The linear mass density of the string is $$0.10kg\, m{-1}$$ and it is kept under a tension of $$90N$$. Find the speed and the wavelength of the wave.
A sonometer wire having a length of $$1.50 m$$ between the bridges vibrates in its second harmonic in resonance with a tuning fork of frequency 256 Hz. What is the speed of the transverse wave on the wire?
Three resonant frequency of a string are $$90, 150$$ and $$210 Hz$$. If the length of the string is $$80 cm$$, what would be the speed of a transverse wave on this string?
In the given figure :
The equation of a wave travelling on a stretched string is : $$y=4\sin 2\pi \left(\dfrac{t}{0.02}-\dfrac{x}{100}\right)$$ Here $$x$$ and $$y$$ are in $$cm$$ and $$t$$ is in second. The speed of wave is :
Along a stretched string equation of transverse wave is $$y=3\sin \left[2\pi \left(\dfrac{x}{20}-\dfrac{t}{0.01}\right)\right]$$ where, $$x, y$$ are in $$cm$$ and $$t$$ is in $$sec$$. The wave velocity is :