Subjective Type

Find the de Broglie wavelength of hydrogen molecules, which corresponds to their most probable velocity at room temperature.

Solution


SIMILAR QUESTIONS

Modern Physics

An electron (of mass m) and a photon have the same energy E in the range of a few eV. The ratio of the de-Broglie wavelength associated with the electron and the wavelength of the photon is (c = speed of light in vacuum)

Modern Physics

An electron (mass $$m$$) with initial velocity $$\vec { v } ={ v }_{ 0 }\hat { i } +{ v }_{ 0 }\hat { j } $$ is an electric field $$\vec { E } =-{ E }_{ 0 }\hat { k } $$. If $${ \lambda }_{ 0 }$$ is initial de-Broglie wave length at time $$t$$ is given by

Modern Physics

An electron of mass $$m$$ and magnitude of charge $$|e|$$ initially at rest gets accelerated by a constant electric field $$E$$. The rate of change of de-Broglie wavelength of this electron at time $$t$$ ignoring relativistic effects is:

Modern Physics

If the deBroglie wavelenght of an electron is equal to $$10^{3}$$ times the wavelength of a photon of frequency $$6 \times 10^{14} Hz$$, then the speed of electron is equal to : (Speed of light = $$3 \times 10^8 m/s$$ Planck's constant = $$6.63 \times 10^{34} J$$ . Mass of electron = $$9.1 10^{31} kg$$)

Modern Physics

The de - Broglie wavelength associated with the electron in the $$n=4$$ level is :

Modern Physics

If electron charge e, electron mass m, speed of light in vacuum c and Planck's constant h are taken as fundamental constant h are taken as fundamental quantities, the permeability of vacuum $$\mu_0$$ can be expressed in units of

Modern Physics

For which of the following particles will it be most difficult to experimentally verify the de-Broglie relationship?

Modern Physics

Consider an electron in a hydrogen atom, revolving in its second excited state (having radius $$4.65 \mathring{A}$$). The de-Broglie wavelength of this electron is:

Modern Physics

Two electrons are moving with non-relativistic speeds perpendicular to each other. If corresponding de Broglie wavelengths are $${ \lambda }_{ 1 }$$ and $${ \lambda }_{ 2 }$$, their de Broglie wavelength in the frame of reference attached to their centre of mass is:

Modern Physics

The de-Broglie wavelength $$(\lambda_{B})$$ associated with the electron orbiting in the second excited state of hydrogen atom is related to that in the ground state $$(\lambda_{G})$$ by :

Contact Details