Polynomials
The sum of values of $$ x $$ satisfying the equation $$ (31+8 \sqrt{15})^{x^{2}-3}+1=(32+8 \sqrt{15})^{x^{2}-3} $$ is
If $$a + b + c = 0$$, prove that identities $$(b^{2} c + c^{2}a + a^{2}b - 3abc)(bc^{2} + ca^{2} + ab^{2} - 3abc) = (bc + ca + ab)^{3} + 27a^{2} b^{2} c^{2}$$.
⇒(b2c+c2a+a2b−3abc)(bc2+ca2+ab2−3abc)⇒(b2c+c2a+a2b−3abc)(bc2+ca2+ab2−3abc)
=(b2c+c2a+a2b)(bc2+ca2+ab2)−3abc∑a2b+9a2b2c2⟶1=(b2c+c2a+a2b)(bc2+ca2+ab2)−3abc∑a2b+9a2b2c2⟶1
Now, (b2c+c2a+a2b)(bc2+ca2+ab2)=b3c3+c3a3+a3b3+abc(a3+b3+c3)+3a2b2c2(b2c+c2a+a2b)(bc2+ca2+ab2)=b3c3+c3a3+a3b3+abc(a3+b3+c3)+3a2b2c2
={(bc+ca+ab)3−3abc∑a2b−6a2b2c2}+abc(a3+b3+c3)+3a2b2c2={(bc+ca+ab)3−3abc∑a2b−6a2b2c2}+abc(a3+b3+c3)+3a2b2c2
Hence from 11 the given expression,
=(bc+ca+ab)3−6abc∑a2b+6a2b2c2+abc(a3+b3+c3)=(bc+ca+ab)3−6abc∑a2b+6a2b2c2+abc(a3+b3+c3)
But ∑a2b=(a+b+c)(a2+b2+c2)−3abc∑a2b=(a+b+c)(a2+b2+c2)−3abc
=−3abc∵a+b+c=0=−3abc∵a+b+c=0
Also, a3+b3+c3=3abca3+b3+c3=3abc
Hence the expression,
=(bc+ca+ab)3+18a2b2c2+6a2b2c2+3a2b2c2=(bc+ca+ab)3+18a2b2c2+6a2b2c2+3a2b2c2
=(bc+ca+ab)3+27a2b2c2=(bc+ca+ab)3+27a2b2c2
The sum of values of $$ x $$ satisfying the equation $$ (31+8 \sqrt{15})^{x^{2}-3}+1=(32+8 \sqrt{15})^{x^{2}-3} $$ is
If $$a + b + c = 0$$, prove that identities $$2(a^{4} + b^{4} + c^{4}) = (a^{2} + b^{2} + c^{2})^{2}$$.
If $$a + b + c = 0$$, prove that identities $$a^{5} + b^{5} + c^{5} = -5abc (bc + ca + ab)$$.
If $$a + b + c = 0$$, prove that identities $$\dfrac {a^{7} + b^{7} + c^{7}}{7} = \dfrac {a^{5} + b^{5} + c^{5}}{5} \cdot \dfrac {a^{2} + b^{2} + c^{2}}{2}$$.
$$(b - c)^{6} + (c - a)^{6} - 3(b - c)^{2}(c - a)^{2} (a - b)^{2} = 2(a^{2} + b^{2} + c^{2} - bc - ca - ab)^{3}$$.
$$(b - c)^{7} + (c - a)^{7} + (a - b)^{7} = 7(b - c)(c - a)(a - b) (a^{2} + b^{2} + c^{2} - bc - ca - ab)^{2}$$.
If $$a + b + c = 0$$, and $$x + y + z = 0$$, show that $$4(ax + by + cz)^{3} - 3(ax + by + cz)(a^{2} + b^{2} + c^{2})(x^{2} + y^{2} + z^{2})\\ - 2(b - c)(c - a)(a - b)(y - z)(z - x)(x - y) = 54\ abcxyz$$.
Show that $$ (97)^3 + ( 14)^3 $$ is divisible by $$111 $$
Factorise the following expression using algebraic identities. $$ a^4 + 6a^2b^2 +9b^4 $$
Factorise the following expression using algebraic identities. $$ x^2 + \dfrac {1}{x^2} + 2 $$