Single Choice

If $$\vec {a}$$ and $$\vec {b}$$ are two collinear vectors, then which of the following are incorrect?

A$$\vec {b}=\lambda \vec {a}$$, for some scalar $$\lambda$$
B$$\vec {a}=\pm \vec {b}$$
Cthe respective components of $$\vec {a}$$ and $$\vec {b}$$ are proportional
Dboth the vectors $$\vec {a}$$ and $$\vec {b}$$ have same direction, but different magnitudes
Correct Answer

Solution

If $$\vec {a}$$ and $$\vec {b}$$ are two collinear vectors, then they are parallel.
Therefore, we have:
$$\vec {b}=\lambda \vec {a}$$ (For some scalar $$\lambda$$)
If $$\lambda=\pm 1$$, then $$\vec {a}=\pm \vec {b}$$
If $$\vec {a}=a_1\hat {i}+a_2\hat {j}+a_3\hat {k}$$ and $$\vec {b}=b_1\hat {i}+b_2\hat {j}+b_3\hat {k}$$, then
$$\vec {b}=\lambda \vec {a}$$
$$\Rightarrow b_1\hat {i}+b_2\hat {j}+b_3\hat {k}=\lambda (a_1\hat {i}+a_2\hat {j}+a_3\hat {k}=\lambda (a_1\hat {i}+a_2\hat {j}+a_3\hat {k})$$
$$\Rightarrow b_1\hat {i}+b_2\hat {j}+b_3\hat {k}=(\lambda a_1)\hat {i}+(\lambda a_2)\hat {j}+(\lambda a_3)\hat {k}$$
$$\Rightarrow b_1=\lambda a_1, b_1=\lambda a_2, b_3=\lambda a_3$$
$$\Rightarrow \dfrac {b_1}{a_1}=\dfrac {b_2}{a_2}=\dfrac {b_3}{a_3}=\lambda$$
Thus, the respective components of $$\vec {a}$$ and $$\vec {b}$$ are proportional.
However, vectors $$\vec {a}$$ and $$\vec {b}$$ can have different directions.
Hence, the statement given in $$D$$ is incorrect.
The correct answer is $$D$$.


SIMILAR QUESTIONS

Vector Algebra

If the vectors $$2\hat{i}-3\hat{j}+6\hat{k}$$, $$\vec{b}$$ are collinear and $$|b|=14$$, then $$\vec{b}=$$

Vector Algebra

Given three non-zero, non-coplanar vectors $$\vec{a}, \vec{b}$$ and $$\vec{c}$$. $$ \vec{r_1} = p\vec{a} + q\vec{b} + \vec{c}$$ and $$\vec{r_2} = \vec{a} + p\vec{b} + q\vec{c}$$. If the vectors $$\vec{r_1} + 2\vec{r_2}$$ and $$2\vec{r_1}+ \vec{r_2}$$ are collinear, then $$(p, q)$$ is

Vector Algebra

If $$a = ( 1 , -1 )$$ and $$b = (- 2 , m )$$ are two collinear vectors then $$m$$ is equal to :

Vector Algebra

If the vector $$\vec {b}$$ is colllinear with the vector $$\vec {a}=(2\sqrt {2},-1,4)$$ and $$|\vec {b}|=10$$, then:

Vector Algebra

Show that the vectors $$2\hat {i}-3\hat {j}+4\hat {k}$$ and $$-4\hat {i}+6\hat {j}-8\hat {k}$$ are collinear

Vector Algebra

$$\vec{b} \space and \space \vec{c}$$ are non-collinear if $$\vec{a} \times (\vec{b} \times \vec{c}) + (\vec{a} . \vec{b})\vec{b} = (4 - 2x - sin y) \vec{b} + (x^2 - 1)\vec{c} \space and \space (\vec{c} . \vec{c})\vec{a} = \vec{c}$$. Then

Vector Algebra

If vectors $$\vec{a}\space and \space \vec{b}$$ are non-collinear, then $$\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|}$$ is

Vector Algebra

Given three vector $$\vec a, \vec b$$ and $$\vec c$$, two of which are non-collinear. Further if $$(\vec a + \vec b)$$ is collinear with $$\vec c, (\vec b + \vec c)$$ is collinear with $$\vec a, \mid \vec a \mid = \mid \vec b \mid = \mid \vec c \mid = \sqrt 2$$. Find the value of $$\vec a \cdot \vec b + \vec b \cdot \vec c + \vec c \cdot \vec a.$$

Vector Algebra

The points with position vectors $$\vec {a} + \vec {b}, \vec {a} - \vec {b}$$ and $$\vec {a} + k\vec {b}$$ are collinear for all real values of $$k$$.

Vector Algebra

If $$\vec{\alpha} + \vec{\beta} + \vec{\gamma} = a \vec{\delta}$$ and $$\vec{\beta} + \vec{\gamma} + \delta = b \vec{\alpha}, \vec{\alpha}$$ and $$\vec{\delta}$$ are non-collinear, then $$\vec{\alpha} + \vec{\beta} + \vec{\gamma} + \vec{\delta}$$ equals

Contact Details