Application of Derivatives
If the petrol burnt per hour in driving a motor boat varies as the cube of its velocity when going against a current of C kmph, the most economical speed is
Let $$f,\ g$$ and $$h$$ be real-valued functions defined on the interval $$[0,1]$$ by $$f(x)=e^{x^{2}}+e^{-x^{2}},\ g(x) =xe^{x^{2}}+e^{-x^{2}}$$ and $$h(x)=x^{2}e^{x^{2}}+e^{-x^{2}}$$ If $$a,\ b$$ and $$c$$ denote, respectively, the absolute maximum of $$f,\ g$$ and $$h$$ on $$[0,1]$$ respectively then
$$1\geqslant x \geqslant x^2 \forall x\in [0,1]$$
$$e^{x^2} \geqslant xe^{x^2} \geqslant x^2e^{x^2}$$ i.e.
$$e^{-x^2}+e^{x^2} \geqslant e^{-x^2}+xe^{x^2} \geqslant e^{-x^2}+x^2e^{x^2}$$
Equality holds when $$x=1$$
i.e. $$f(x)\geqslant g(x)\geqslant h(x) \forall x \epsilon [0, 1]$$
Thus, $$f(1)$$ is the greatest.
Thus, $$a=b=c= e+\cfrac{1}{e}$$
Hence, $$a=b=c$$.
If the petrol burnt per hour in driving a motor boat varies as the cube of its velocity when going against a current of C kmph, the most economical speed is
lf $$I^{2}+\mathrm{m}^{2}=1$$, then the $$\displaystyle \max$$ values of $$I+\mathrm{m}$$ is
The maximum value of (x - 1) (x -2) (x - 3) is
A box is made with square base and open top. The area of the material used is 192 sq. cms. If the volume of the box is maximum, the dimensions of the box are
The minimum value of $$(1+\displaystyle \frac{1}{\sin^{\mathrm{n}}\mathrm{x}})(1+\frac{1}{\cos^{\mathrm{n}}\mathrm{x}})$$
Let $$f(x)$$ be a polynomial of degree $$5$$ such that $$x = \pm 1$$ are its critical points. If $$\underset{x \rightarrow 0}{\lim} \left(2 + \dfrac{f(x)}{x^3} \right) = 4$$, then which one of the following is not true?
The maximum value of function $$f(x) = 3x^3 - 18x^2 + 27x - 40$$ on the set $$S = \{x \in R : x^2 + 30 \le 11x \}$$ is:
Let $$k$$ and $$K$$ be the minimum and the maximum values of the function $$\displaystyle f(x) = \frac{(1 + x)^{0.6}}{1 + x^{0.6}}$$ in $$[0, 1]$$ respectively, then the ordered pair $$(k, K)$$ is equal to
Let $$\mathrm{f}:\mathrm{R}\rightarrow \mathrm{R}$$ be a continuous function defined by $$\displaystyle \mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{e}^{\mathrm{x}}+2\mathrm{e}^{-\mathrm{x}}}$$. Statement-l: $$\displaystyle \mathrm{f}(\mathrm{c})=\frac{1}{3}$$, for some $$\mathrm{c}\in$$ R. Statement-2: $$0<\displaystyle \mathrm{f}(\mathrm{x})\leq\frac{1}{2\sqrt{2}}$$ , for all $$\mathrm{x}\in \mathrm{R}$$
Let x, y be positive real number and m, n positive integers. The maximum value of the expression $$\dfrac{x^m y^n}{(1 + x^{2m}) (1 + y^{2n})}$$ is