Subjective Type

Prove that the straight line $$lx + my = n$$ is a normal to the ellipse, if $$\dfrac {a^{2}}{l^{2}} + \dfrac {b^{2}}{m^{2}} = \dfrac {(a^{2} - b^{2})^{2}}{n^{2}}$$.
Solution
We have,
Equation of straight line is
$$lx+my=n\,\,......\,\,\left( 1 \right)$$
Normal to the ellipse
$$\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\,\,\,\left( a>b \right)$$
We know that equation of line
$$y=mx+c$$
Equation of line normal to the ellipse be
$$y=mx\pm \dfrac{m\left( {{a}^{2}}-{{b}^{2}} \right)}{\sqrt{{{a}^{2}}+{{b}^{2}}{{m}^{2}}}}$$
On comparing that,
$$c=\pm \dfrac{m\left( {{a}^{2}}-{{b}^{2}} \right)}{\sqrt{{{a}^{2}}+{{b}^{2}}{{m}^{2}}}}\,\,......\,\,\left( 2 \right)$$
From (1),
$$ lx+my+n=0 $$
$$ \Rightarrow y=-\dfrac{l}{m}x-\dfrac{n}{m} $$
Now,
$$y=mx+c$$
On comparing that,
$$ c=\dfrac{-n}{m}\,\,......\,\,\left( 3 \right) $$
$$ slope\,=\dfrac{-l}{m} $$
From (2) and (3) to, and we get,
$$\pm \dfrac{m\left( {{a}^{2}}-{{b}^{2}} \right)}{\sqrt{{{a}^{2}}+{{b}^{2}}{{m}^{2}}}}=\dfrac{-n}{m}\,$$
On squaring both side and we get,
$$ \pm \dfrac{\left( \dfrac{-l}{m} \right)\left( {{a}^{2}}-{{b}^{2}} \right)}{\sqrt{{{a}^{2}}+{{b}^{2}}{{m}^{2}}}}=\dfrac{-n}{m}\, $$
$$ \dfrac{{{n}^{2}}}{{{m}^{2}}}=\dfrac{\dfrac{{{l}^{2}}}{{{m}^{2}}}{{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}}{{{a}^{2}}+{{b}^{2}}\dfrac{{{l}^{2}}}{{{m}^{2}}}} $$
$$ \dfrac{{{a}^{2}}{{m}^{2}}+{{b}^{2}}{{l}^{2}}}{{{l}^{2}}{{m}^{2}}}=\dfrac{{{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}}{{{n}^{2}}} $$
$$ \dfrac{{{a}^{2}}}{{{l}^{2}}}+\dfrac{{{b}^{2}}}{{{m}^{2}}}=\dfrac{{{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}}{{{n}^{2}}} $$
Hence proved.
Ellipse
If $$\beta$$ is one of the angles between the normals to the ellipse, $$x^{2} + 3y^{2} = 9$$ at the points $$(3\cos \theta, \sqrt {3} \sin \theta)$$ and $$(-3\sin \theta, \sqrt {3}\cos \theta); \theta \in \left (0, \dfrac {\pi}{2}\right )$$; then $$\dfrac {2\cot \beta}{\sin 2\theta}$$ is equal to
Ellipse
If line $$y = 2x + c$$ is a normal to the ellipse $$\dfrac {x^{2}}{9} + \dfrac {y^{2}}{16} = 1$$, then find the value of c.
Ellipse
A point on the ellispe $$x^{2}+ 3y^{2}=37$$ where the normal is parallel to the line 6x-5y=2 is
Ellipse
If from a point P$$(0, \alpha)$$ two normals other than axes are drawn to ellipse $$\dfrac{x^{2}}{25}+ \dfrac{y^{2}}{16}=1 $$, such that $$|\alpha|$$
Ellipse
Show that the locus of the intersection of two perpendicular normals to an ellipse is the curve
$$\left( { a }^{ 2 }+{ b }^{ 2 } \right) \left( { x }^{ 2 }+{ y }^{ 2 } \right) { \left( { a }^{ 2 }{ y }^{ 2 }+{ b }^{ 2 }{ x }^{ 2 } \right) }^{ 2 }={ \left( { a }^{ 2 }-{ b }^{ 2 } \right) }^{ 2 }{ \left( { a }^{ 2 }{ y }^{ 2 }-{ b }^{ 2 }{ x }^{ 2 } \right) }^{ 2 }$$.
Ellipse
ABC is a triangle inscribed in the ellipse $$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$$ having each side parallel to the tangent at the opposite angular point; prove that the normals at A, B, and C meet at a point which lies on the ellipse. $$a^2x^2+b^2y^2=\dfrac{1}{4}(a^2-b^2)^2$$.
Ellipse
If the normal at $$P$$ meet the axis in $$G$$ and $$g$$, then $$PG=Pg=pc$$.
Ellipse
If $$CP$$ be conjugate to the normal at $$Q$$, prove that $$CQ$$ is conjugate to the normal at $$P$$.
Ellipse
If the normal to the ellipse $$3x^2+4y^2=12$$ at a point P on it is parallel to the line, $$2x+y=4$$ and the tangent to the ellipse at P passes through $$Q(4, 4)$$ then PQ is equal to?