Inverse Trigonometric Functions
The solution set of the equation $$\tan^{-1}x -\cot^{-1}x =\cos^{-1}(2-x)$$ is
Solve the equation for $$x : {\sin}^{-1}\dfrac{5}{x} + {\sin}^{-1}\dfrac{12}{x}=\dfrac{\pi}{2}, x \ne 0$$.
The given equation is
$${\sin}^{-1}\dfrac{5}{x}+{\sin}^{-1}\dfrac{12}{x}=\dfrac{\pi}{2}$$
$$\Rightarrow \dfrac{12}{x}=\sin \begin{pmatrix}\dfrac{\pi}{2}-{\sin}^{-1}\dfrac{5}{x}\end{pmatrix}$$
$$\Rightarrow \dfrac{12}{x}=\cos \begin{pmatrix}{\sin}^{-1}\dfrac{5}{x}\end{pmatrix}$$
$$\Rightarrow \dfrac{12}{x}=\sqrt{1-\begin{pmatrix}\dfrac{5}{x}\end{pmatrix}^2}$$ $$\because {\cos}({\sin}^{-1}x)=\sqrt{1-x^2}$$
$$\begin{pmatrix}\dfrac{12}{x}\end{pmatrix}^2 = 1-\dfrac{25}{x^2}$$
$$\Rightarrow \dfrac{144}{x^2}+\dfrac{25}{x^2}=1$$
$$\Rightarrow \dfrac{169}{x^2}=1$$
$$x^2=169$$
$$\Rightarrow x = \pm \sqrt{169}$$
$$\Rightarrow x=13, -13$$
But $$x=-13$$ doesn't satisfy the given equation.
Hence the solution of the given equation is $$x=13$$.
The solution set of the equation $$\tan^{-1}x -\cot^{-1}x =\cos^{-1}(2-x)$$ is
If $$\cos ^{ -1 }{ x } -\sin ^{ -1 }{ x } =0$$, then $$x$$ is equal to-
If $$\tan ^{ -1 }{ x } +\tan ^{ -1 }{ y } =\cfrac { 2\pi }{ 3 } $$, then $$\cot ^{ -1 }{ x } +\cot ^{ -1 }{ y } $$ is equal to
If $$4\sin^{-1}x+\cos^{-1}x=\pi$$, then $$x$$ is equal to:
The number of real solutions of the equation $$\sin^{-1}\left(\displaystyle\sum^{\infty}_{i=1}x^{i+1}-x\displaystyle\sum^{\infty}_{i=1}\left(\displaystyle\dfrac{x}{2}\right)^i\right)=\dfrac{\pi}{2}-\cos^{-1}\left(\displaystyle\sum^{\infty}_{i=1}\left(-\displaystyle\frac{x}{2}\right)^i-\displaystyle\sum^{\infty}_{i=1}(-x)^i\right)$$ lying in the interval $$\left(-\displaystyle\frac{1}{2}, \frac{1}{2}\right)$$ is
Prove: $$\displaystyle { \tan }^{ -1 }\frac { 2 }{ 11 } +{ \tan }^{ -1 }\frac { 7 }{ 24 } ={ \tan }^{ -1 }\frac { 1 }{ 2 } $$
If $$\displaystyle \sin { \left( { \sin }^{ -1 }\frac { 1 }{ 5 } +{ \cos }^{ -1 }x \right) } =1$$, then find the value of $$x$$.
Prove: $$\displaystyle \frac { 9\pi }{ 8 } -\frac { 9 }{ 4 } { \sin }^{ -1 }\frac { 1 }{ 3 }=\frac { 9 }{ 4 } { \sin }^{ -1 }\frac { 2\sqrt { 2 } }{ 3 } $$
If sin $$^{-1}(x-\dfrac{x^2}{2}+\dfrac{x^3}{4}+..............\infty)+$$ cos $$^{-1}(x^2-\dfrac{x^4}{2}+\dfrac{x^6}{4}-...........\infty)$$$$=\dfrac {\pi}{2}$$ and $$0 < x < \sqrt{2}$$ then x =
If $$\tan^{-1}\dfrac{a+x}{a}+\tan^{-1}\dfrac{a-x}{a}=\dfrac{\pi}{6}$$, then $$x^2=$$?