Circles
A vertical line passing through the point $$(\mathrm{h}, 0)$$ intersects the ellipse $$\displaystyle \frac{x^{2}}{4}+\frac{y^{2}}{3}=1$$ at the points $$\mathrm{P}$$ and $$\mathrm{Q}$$. Let the tangents to the ellipse at $$\mathrm{P}$$ and $$\mathrm{Q}$$ meet at the point $$\mathrm{R}$$. If $$\Delta(\mathrm{h})=$$ area of the triangle $$\mathrm{P}\mathrm{Q}\mathrm{R},\ \Delta_{1}= \underset{1/2\leq h\leq 1}{max} \Delta(\mathrm{h})$$ and $$\displaystyle \Delta_{2}=\min_{1/2\leq h\leq 1}\Delta(\mathrm{h})$$ , then $$\displaystyle \frac{8}{\sqrt{5}}\Delta_{1}-8\Delta_{2}=$$