Single Choice

The perpendicular from the centre upon the normal on any point of the hyperbola $$\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1$$ meets at $$R$$ . Find the locus of $$R$$.

A$$(x^2\, +\, y^2)^2\, (a^2y^2\, -\, b^2x^2)\, =\, x^2y^2(a^2\, +\, b^2)^2$$
Correct Answer
B$$(x^2\, +\, y^2)^2\, (a^2y^2\, -\, b^2x^2)\, =\, x^2y^2(a^2\, -\, b^2)^2$$
C$$(x^2\, -\, y^2)^2\, (a^2y^2\, +\, b^2x^2)\, =\, x^2y^2(a^2\, -\, b^2)^2$$
D$$(x^2\, -\, y^2)^2\, (a^2y^2\, -\, b^2x^2)\, =\, x^2y^2(a^2\, +\, b^2)^2$$

Solution

Equation of normal to the given hyperbola is given by,
$$\displaystyle \frac{ax}{\sec\theta}+\frac{by}{\tan\theta}=a^2+b^2..(1)$$
Slope $$\displaystyle m = -\frac{a\tan\theta}{b\sec\theta}=-\frac{a\sin\theta}{b}$$
Thus equation of line through centre and perpendicular to the (1) is, $$y =-\cfrac{1}{m}x$$
$$\Rightarrow\displaystyle y = \frac{b}{a\sin\theta}x ..(2)$$
Thus by eliminating $$\theta$$ from (1) and (2) we will get required locus,
$$\Rightarrow \displaystyle \cos\theta\left(ax+\frac{by}{bx/ay}\right)=a^2+b^2$$
$$\Rightarrow \displaystyle a\cos\theta\left(x^2+y^2\right)=x(a^2+b^2)$$
Squaring we get,
$$\Rightarrow \displaystyle a^2\cos^2\theta\left(x^2+y^2\right)^2=x^2\left(a^2+b^2\right)^2$$
$$\Rightarrow \displaystyle a^2\left(1-\frac{b^2x^2}{a^2y^2}\right)\left(x^2+y^2\right)^2=x^2\left(a^2+b^2\right)^2$$
$$\Rightarrow (x^2\, +\, y^2)^2\, (a^2y^2\, -\, b^2x^2)\, =\, x^2y^2(a^2\, +\, b^2)^2$$


SIMILAR QUESTIONS

Hyperbola

\The locus of the foot of perpendicular from the focus on any tangent to the hyperbola $$\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$$ is:

Hyperbola

Let the locus of the middle points of normal chords of the rectangular hyperbola $$x^2-y^2 = a^2$$ be $$(y^2 - x^2)^m = ka^2x^2y^2$$. Find $$k+m$$ ?

Hyperbola

Given the base of a triangle and the ratio of the tangent of half the base angles,find the locus of vertex.

Hyperbola

The locus of the point of intersection of the lines $$\sqrt{3}x - y - 4\sqrt{3}t = 0$$ and $$\sqrt{3}tx + ty - 4\sqrt{3} = 0$$ ( where t is a parameter) is a hyperbola whose eccentricity is

Hyperbola

Locus of the feet of the perpendiculars drawn from either focus on a variable tangent to the hyperbola $$16y^{2} - 9x^{2} = 1$$ is

Hyperbola

Locus of a point whose chord of contact with respect to the circle $$x^{2} + y^{2} = 4$$ is a tangent to the hyperbola xy = 1 is a/an

Hyperbola

If tangents PQ and PR are deawn from variable point P to the hyperbola $$\dfrac{x^{2}}{a^{2}} - \dfrac{y^{2}}{b^{2}} = 1 (a> b)$$ so that the fourth vertex S of parallelogram PQSR lies on circumcircle of triangle PQR, then locus of P is

Hyperbola

If the sum of the slopes of normal from a point P to the hyperbola $$xy = c^{2}$$ is equal to $$\lambda (\lambda \epsilon R^{+})$$, then locus of point P is

Hyperbola

If locus of a point, whose chord of contact with respect to the circle $$ x^{2}+y^{2}=4 $$ is a tangent to the hyperbola xy=1 is $$ xy=c^{2} $$ , then value of $$ c^{2} $$ is

Hyperbola

Tangents are drawn from any point on the hyperbola $$ \dfrac{x^{2}}{9}-\dfrac{y^{2}}{4} $$ =1 to the circle $$ x^{2}+y^{2}=9 $$. Find the locus of midpoint of the chord of contact.

Contact Details