Sequences and Series
Say true or false. The total savings (in $$Rs.$$) after every month for $$10$$ months when $$Rs. 50$$ are saved each month are $$50, 150, 200, 250, 300, 350, 400, 450, 500$$ represent G.P.
After striking the floor, a certain ball rebounds $${ (4/5) }^{ th }$$ of height from which it has fallen. Then the total distance that it travels before coming to rest, if it is gently dropped from a height of 120 m is
Initially, the ball falls from a height of $$120\ m$$.
After striking the floor, it rebounds and goes to a height of $$\dfrac{4}{5} \times (120)\ m $$.
Now, it falls from a height of $$\dfrac{4}{5} \times (120)\ m $$ and after rebounding goes to a height of $$\dfrac{4}{5} \left( \dfrac{4}{5} (120) \right) m$$.
This process is continued till the ball comes to rest.
Hence, the total distance travelled is
$$D= 120 + 2 \left[ \dfrac{4}{5} (120) +\left( \dfrac{4}{5} \right)^2 (120) + \dots \infty \right]$$
The above series in brackets is an infinte GP,
$$\therefore D = 120 + 2 \left[ \dfrac{\dfrac{4}{5} (120)}{1 - \dfrac{4}{5}} \right] \\ \quad= 120+2\left[\dfrac{480}{1}\right]= 1080 \ m$$
Say true or false. The total savings (in $$Rs.$$) after every month for $$10$$ months when $$Rs. 50$$ are saved each month are $$50, 150, 200, 250, 300, 350, 400, 450, 500$$ represent G.P.
For a G.P, if $$(m+n)^{th}$$ term is p and $$(m-n)^{th}$$ term is q, then $$m^{th}$$ term is ________.
The first term of a G.P. is $$1$$. The sum of the third term and fifth term is $$90$$. Find the common ratio of G.P if it is positive.
If $$N$$ is the number of ways in which $$3$$ distinct numbers can be selected from the set $$\left \{3^{1}, 3^{2}, 3^{3}, ... 3^{10}\right \}$$ so that they form a G.P. then the value of $$N/5$$ is.
The third term of a Geometric Progression is $$4$$. The product of the first five terms is :
Let $$S_1, S_2, ... $$ be squares such that for each $$n\geq 1$$, the length of a side of $$S_n$$ equals to the length of a diagonal of $$S_{n+1}$$. If the length of a side of $$S_1$$ is 10 cm, then for which of the following value(s) of n is the area of $$S_n$$ less than 1 sq. cm?
The sum of an infinite geometric series is $$162$$ and the sum of its first $$n$$ terms is $$160 .$$ If the inverse of its common ratio is an integer, then which of the following is not a possible first term?
An infinite G.P. has first term as a and sum as $$5$$, then?
If $$a, b, c$$ be in G.P. & $$log_c\, a,\, log_b\, c,log_a\,b$$ be in A.P., then show that the common difference of the A.P is
If $$a , b ,c$$ are in G . P and $$a -b , a - c$$ and $$b - c$$ are in H . P . then prove that $$a + 4b + c$$ is equal $$0$$