Multiple Choice

Let $$S_1, S_2, ... $$ be squares such that for each $$n\geq 1$$, the length of a side of $$S_n$$ equals to the length of a diagonal of $$S_{n+1}$$. If the length of a side of $$S_1$$ is 10 cm, then for which of the following value(s) of n is the area of $$S_n$$ less than 1 sq. cm?

A$$7$$
B$$8$$
Correct Answer
C$$9$$
Correct Answer
D$$10$$
Correct Answer

Solution

Let $$a_n$$ denotes the side of the square $$S_n$$ then
$$a_n=\sqrt 2a_{n+1}$$
$$\Rightarrow \dfrac {a_{n+1}}{a_n}=\dfrac {1}{\sqrt 2}$$
$$\Rightarrow a_n=a_1(\dfrac {1}{\sqrt 2})^{n-1}$$ (G.P. formula)$$=10(\dfrac {1}{\sqrt 2})^{n-1}$$
Now, we must have $$a_n^2 < 1$$
$$\Rightarrow 100(\dfrac {1}{\sqrt 2})^{2n-1} < 1$$
$$\Rightarrow 2^n > 200 \Rightarrow n > 7$$


SIMILAR QUESTIONS

Sequences and Series

Say true or false. The total savings (in $$Rs.$$) after every month for $$10$$ months when $$Rs. 50$$ are saved each month are $$50, 150, 200, 250, 300, 350, 400, 450, 500$$ represent G.P.

Sequences and Series

For a G.P, if $$(m+n)^{th}$$ term is p and $$(m-n)^{th}$$ term is q, then $$m^{th}$$ term is ________.

Sequences and Series

The first term of a G.P. is $$1$$. The sum of the third term and fifth term is $$90$$. Find the common ratio of G.P if it is positive.

Sequences and Series

If $$N$$ is the number of ways in which $$3$$ distinct numbers can be selected from the set $$\left \{3^{1}, 3^{2}, 3^{3}, ... 3^{10}\right \}$$ so that they form a G.P. then the value of $$N/5$$ is.

Sequences and Series

The third term of a Geometric Progression is $$4$$. The product of the first five terms is :

Sequences and Series

The sum of an infinite geometric series is $$162$$ and the sum of its first $$n$$ terms is $$160 .$$ If the inverse of its common ratio is an integer, then which of the following is not a possible first term?

Sequences and Series

After striking the floor, a certain ball rebounds $${ (4/5) }^{ th }$$ of height from which it has fallen. Then the total distance that it travels before coming to rest, if it is gently dropped from a height of 120 m is

Sequences and Series

An infinite G.P. has first term as a and sum as $$5$$, then?

Sequences and Series

If $$a, b, c$$ be in G.P. & $$log_c\, a,\, log_b\, c,log_a\,b$$ be in A.P., then show that the common difference of the A.P is

Sequences and Series

If $$a , b ,c$$ are in G . P and $$a -b , a - c$$ and $$b - c$$ are in H . P . then prove that $$a + 4b + c$$ is equal $$0$$

Contact Details