Subjective Type

Calculate $$(1001)^{1/3}$$.

Solution

We can write $$1001$$ as $$1001 = 1000\left (1 + \dfrac {1}{1000}\right )$$, so that we have
$$(1001)^{1/3} = \left [1000\left (1 + \dfrac {1}{1000}\right )\right ]^{1/3} = 10 \left [1 + \dfrac {1}{1000}\right ]^{1/3}$$
$$= 10(1 + 0.001)^{1/3} = 10\left (1 + \dfrac {1}{3}\times 0.001\right )$$
$$= 10.003333$$.


SIMILAR QUESTIONS

Binomial Theorem

The total number of irrational terms in the binomial expansion of $$(7^\frac 15 - 3^\frac1{10})^{60}$$ is :

Binomial Theorem

If $$ p= (8 + 3 \sqrt{7} )^{n}$$ and $$ f= p- [p],$$ where $$ [\cdot ]$$ denotes the greatest integer function, then the value of $$ p (1 - f) $$ is

Binomial Theorem

Evaluate : $$ ( \sqrt {3} +1)^5 - (\sqrt {3} -1)^5$$

Binomial Theorem

Prove that $$ ( 2 +\sqrt {x})^4 +(2 - \sqrt {x} )^4 = 2 (16 +24x +x^2 ) $$.

Contact Details