Binomial Theorem
If $$ p= (8 + 3 \sqrt{7} )^{n}$$ and $$ f= p- [p],$$ where $$ [\cdot ]$$ denotes the greatest integer function, then the value of $$ p (1 - f) $$ is
The total number of irrational terms in the binomial expansion of $$(7^\frac 15 - 3^\frac1{10})^{60}$$ is :
Given $$(7^\frac 15 - 3^\frac1{10})^{60}$$ has $$61$$ terms
General term $$T_{r+1} = ^{60}C_r \ 7^{\tfrac{60-r}{5}} \ 3^{\tfrac{r}{10}}$$
$$\therefore$$ for rational term, $$r = 0, 10, 20, 30, 40, 50, 60 $$\Rightarrow $$ no of rational terms $$= 7$$
$$\therefore$$ number of irrational terms$$=61-7= 54$$
If $$ p= (8 + 3 \sqrt{7} )^{n}$$ and $$ f= p- [p],$$ where $$ [\cdot ]$$ denotes the greatest integer function, then the value of $$ p (1 - f) $$ is
Evaluate : $$ ( \sqrt {3} +1)^5 - (\sqrt {3} -1)^5$$
Prove that $$ ( 2 +\sqrt {x})^4 +(2 - \sqrt {x} )^4 = 2 (16 +24x +x^2 ) $$.
Calculate $$(1001)^{1/3}$$.