Single Choice

Calculate the standard cell potential in (V) of the cell in which following reaction takes place: $$Fe^{2+}(aq) + Ag^+(aq) \rightarrow Fe^{3+}(aq) + Ag(s)$$ Given that $$E^o_{Ag^+/Ag} = xV$$ $$E^o_{Fe^{2+}/Fe} = yV$$ $$E^o_{Fe^{3+}/Fe} = zV$$

A$$x + 2y - 3z$$
Correct Answer
B$$x - z$$
C$$x - y$$
D$$x + y - z$$

Solution

Solution:- (A) $$x + 2y - 3z$$

$$Fe^{2+}(aq) + Ag^{+}(aq) \rightarrow Fe^{3+} (aq) + Ag(s)$$

Cell reaction,

Anode: $$Fe^{2+}(aq) \rightarrow Fe^{3+} (aq) + e^{\ominus}; E^o_{Fe^{2+}/Fe^{3+}} = mV$$

Cathode: $$Ag^+(aq) + e^{\ominus} \rightarrow ; Ag(s); E^o_{Ag^+/Ag} = xV$$

$$\Rightarrow$$ cell standard potential $$= (m + x)V$$

Now, to find 'm',

$$Fe^{2+}+2e^{\ominus} \rightarrow Fe; E^o_1 = yV \Rightarrow \Delta G_1^o = (2Fy)$$

$$Fe^{3+}+3e^{\ominus} \rightarrow Fe; E^o_2 = zV \Rightarrow \Delta G_2^o = (3Fy)$$

$$Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{\ominus}; E^o_3 = mV \Rightarrow \Delta G_3^o = -(1Fm)$$

$$\Delta G_3^o = \Delta G^0_1 - \Delta G^o_2 = (-2Fy + 3Fz) = -Fm$$

$$\Rightarrow m = (2y - 3z)$$

$$\Rightarrow E^o_{cell} = (x + 2y - 3z)V$$


SIMILAR QUESTIONS

Electrochemistry

Cathodic standard reduction potential minus anodic standard reduction potential is equal to:

Electrochemistry

To a Daniel cell, if $$CuSO_{4}$$ is added to the right hand side half cell, then the cell $$EMF$$:

Electrochemistry

To the Daniel cell, if $$ZnSO_{4}$$ is added to the left hand side electrode, then cell emf:

Electrochemistry

For the cell $$Zn(s) |Zn^{2+} (aq) || M^{x+} (aq) | M(s)$$, different half cells and their standard electrode potentials are given below: $$M^{x+} (aq/M(s))$$ $$Au^{3+} (aq)/Au(s)$$ $$Ag^+ \, /Ag(s)$$ $$Fe^{3+}(aq)/Fe^{2+} (aq)$$ $$Fe^{2+}(aq)/Fe(s)$$ $$E^o_{M^{x+}/M^{/(V)}}$$ $$1.40$$ $$0.80$$ $$0.77$$ $$-0.44$$ If $$E^o_{Zn^{2+}/Zn} = -0.76 V$$, which cathode will give a maximum value of $$E^o_{cell}$$ per electron transferred ?

Electrochemistry

The standard electrode potential $$E^{\ominus}$$ and its temperature coefficient $$\left (\dfrac {dE^{\ominus}}{dT}\right )$$ for a cell are $$2V$$ and $$-5 \times 10^{-4} VK^{-1}$$ at $$300\ K$$ respectively. The cell reaction is $$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq + Cu(s)$$ The standard reaction enthalpy $$(\triangle_{r}H^{\ominus})$$ at $$300\ K$$ in $$kJ\ mol^{-1}$$ is: $$[Use\ R = 8jK^{-1} mol^{-1}$$ and $$F = 96,000\ Cmol^{-1}]$$

Electrochemistry

Given below are the half-cell reactions: $$Mn^{2+}+2e^{-}\rightarrow Mn;\: E^{0}=-1.18V$$ $$ 2\left ( Mn^{3+}+e^{-}\rightarrow Mn^{2+} \right ); \:E^{0}=+1.51V$$. The $$ E^{0}$$ for $$3Mn^{2+}\rightarrow Mn+2Mn^{3+}$$ will be:

Electrochemistry

Consider the following relations for emf of an electrochemical cell : (i) EMF of cell = (Oxidation potential of anode) - (Reduction potential of cathode) (ii) EMF of cell = (Oxidation potential of anode) + (Reduction potential of cathode) (iii) EMF of cell = (Reduction potential of anode) + (Reduction potential of cathode) (iv) EMF of cell = (Oxidation potential of anode) - (Oxidation potential of cathode) Which of the above relation(s) is correct?

Electrochemistry

A button cell used in watches functions as following: $$Zn(s)+Ag_{2}O(s)+H_{2}O(l)\rightleftharpoons 2Ag(s)+Zn^{2+}(aq)+2OH^{-}(aq)$$ If half cell potentials are: $$Zn^{2+}(aq)+2e^{-}\rightarrow Zn(s);\:E^{\circ}=-0.76\:V$$ $$Ag_{2}O(s)+H_{2}O(l)+2e^{-}\rightarrow 2Ag(s)+2OH^{-}(aq),\:E^{\circ}=0.34\:V$$ The cell potential will be:

Electrochemistry

Calculate the emf of the call in which of the following reaction: $$Ni(s) + \ 2Ag^+(0.002M)\rightarrow Ni^{2+}(0.160M) + 2Ag(s)$$ (Give that $$E^o_{cell} = 1.05 V$$)

Electrochemistry

For the cell reaction, $$2{ Ce }^{ 4+ }+Co\rightarrow 2{ Ce }^{ 3+ }+{ Co }^{ 3+ }$$; $${ E }_{ cell }^{ o }$$ cell is $$1.89 V$$. If $${ E }_{ { Co }^{ 3+ }/Co }$$ is $$-0.28 V$$, what is the value of $${ E }_{ { { Ce }^{ 4+ } }/{ { Ce }^{ 3+ } } }^{ o }$$ ?

Contact Details