Single Choice

Consider the complex number $$z_1$$ and $$z_2$$ satisfying the relation $$|z_1+z_2|^2=|z_1|^2+|z_2|^2$$, then one of the possible argument of complex number $$i\dfrac{z_1}{z_2}$$ is,

A$$\dfrac {\pi}{2}$$
B$$-\dfrac {\pi}{2}$$
C$$0$$
Correct Answer
Dnone of these

Solution

$$|z_{1}+z_{2}|^{2}=z_{1}^{2}+z_{2}^{2}$$

$$z_{1}^{2}+z_{2}^{2}+z_{1}\overline{z_{2}}+\overline{z_{1}}z_{2}=z_{1}^{2}+z_{2}^{2}$$

$$z_{1}\overline{z_{2}}+\overline{z_{1}}z_{2}=0$$

let
$$z_{1}=e^{i\theta}$$

$$z_{2}=e^{i\gamma}$$

Substituting, in the above equation, we get

$$e^{i(\theta-\gamma)}=-e^{-i(\theta-\gamma)}$$

$$e^{2i(\theta-\gamma)}=-1$$

Hence
$$2(\theta-\gamma)=(2n-1)\pi$$

$$\theta-\gamma=\dfrac{(2n-1)\pi}{2}$$

Now $$\theta-\gamma=arg(z_{1}\overline{z_{2}})$$

Therefore, $$arg(z_{1}\overline{z_{2}})=\dfrac{(2n-1)\pi}{2}$$

Hence $$z_{1}\overline{z_{2}}$$ is purely imaginary.

Therefore
$$i(z_{1}\overline{z_{2}})$$ will be purely real.

$$arg(i(z_{1}\overline{z_{2}}))$$ will be 0 or $$\pi$$.

Hence, option $$'C'$$ is correct.


SIMILAR QUESTIONS

Complex Numbers

For a non-zero complex number z, let arg(z) denotes the principal argument with $$-\pi < arg(z) \leq \pi$$. Then, which of the following statement(s) is (are) FALSE?

Complex Numbers

If $$\mid z_1\mid =\mid z_2\mid$$ and arg $$(z_1/z_2)=\pi$$, then $$z_1+z_2$$ is equal to

Complex Numbers

If $$z_1, z_2, z_3$$ are three complex numbers and $$A=\begin{vmatrix}argz_1 & argz_2 & argz_3\\ argz_2 & argz_3 & argz_1\\ argz_3 & argz_1 & argz_2\end{vmatrix}$$ then A is divisible by

Complex Numbers

If for complex number $$z_1$$ and $$z_2, arg(z_1)-arg (z_2)=0$$, then $$\mid z_1-z_2\mid$$ is equal to

Complex Numbers

Consider the complex number $$z_1$$ and $$z_2$$ satisfying the relation $$|z_1+z_2|^2=|z_1|^2+|z_2|^2$$, then the possible difference between the argument of $$z_1$$ and $$z_2$$ is,

Complex Numbers

If $$arg (z) < 0$$, then $$arg (-z) - arg (z) =$$

Complex Numbers

If $$x = 9^{1/3} 9^{1/9} 9^{1/27} .... \infty\ \ ,\ y = 4^{1/3} 4^{-1/ 9}4^{1/27} .... \infty$$ and $$z = \displaystyle \sum_{r = 1}^{\infty} (1 + i)^{-r}$$, then $$arg (x + yz)$$ is equal to

Complex Numbers

If z lies on the circle $$\left| z-2i \right| =2\sqrt { 2 } $$ then the value of arg $$\left( \dfrac { z-2 }{ z+2 } \right) $$ is equal to

Complex Numbers

For $$\mid z - 1\mid = 1$$, show that $$tan \left (\dfrac{arg(z - 1)}{z} \right ) - \dfrac{2i}{z} = -i$$

Complex Numbers

The Maximum value of |{Arg}$$(\dfrac{1}{1 - z})$$| for $$\left|z\right|$$ = 1, z $$\neq$$ 1 is given by.(This question is part of matrix match question)

Contact Details