Multiple Choice

For a non-zero complex number z, let arg(z) denotes the principal argument with $$-\pi < arg(z) \leq \pi$$. Then, which of the following statement(s) is (are) FALSE?

Aarg$$(-1-i)=\displaystyle\frac{\pi}{4}$$, where $$i=\sqrt{-1}$$
Correct Answer
BThe function $$f: \mathbb{R}\rightarrow (-\pi , \pi]$$, defined by $$f(t)=arg(-1+it)$$ for all t $$\epsilon\ \mathbb{R}$$, is continuous at all points of $$\mathbb{R}$$, where $$i=\sqrt{-1}$$
Correct Answer
CFor any two non-zero complex numbers $$z_1$$ and $$z_2$$, arg$$\left(\displaystyle\frac{z_1}{z_2}\right)-$$arg $$(z_1)+$$arg$$(z_2)$$ is an integer multiple of $$2\pi$$
DFor any three given distinct complex numbers $$z_1, z_2$$ and $$z_3$$, the locus of the point z satisfying the condition arg $$\left(\displaystyle\frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}\right)=\pi$$, lies on a straight line
Correct Answer

Solution

(A) $$arg(-1-i)=-\displaystyle\frac{3\pi}{4}$$,
(B) $$f(t)=arg(-1+it)=\left\{\begin{matrix} \pi -\tan^{-1}(t), & t \geq 0\\ -\pi +\tan^{-1}(t), & t < 0\end{matrix}\right.$$
Discontinuous at $$t=0$$.
(C) $$arg\left(\displaystyle\frac{z_1}{z_2}\right)-arg(z_1)+arg(z_2)$$ $$=arg( z_1)-arg(z_2)+2n\pi-arg(z_1)+arg(z_2)=2n\pi$$.

(D) $$arg\left(\displaystyle\frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}\right)=\pi$$

$$\Rightarrow \displaystyle\frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}$$ is real.

$$\Rightarrow z, z_1, z_2, z_3$$ are concyclic.


SIMILAR QUESTIONS

Complex Numbers

If $$\mid z_1\mid =\mid z_2\mid$$ and arg $$(z_1/z_2)=\pi$$, then $$z_1+z_2$$ is equal to

Complex Numbers

If $$z_1, z_2, z_3$$ are three complex numbers and $$A=\begin{vmatrix}argz_1 & argz_2 & argz_3\\ argz_2 & argz_3 & argz_1\\ argz_3 & argz_1 & argz_2\end{vmatrix}$$ then A is divisible by

Complex Numbers

If for complex number $$z_1$$ and $$z_2, arg(z_1)-arg (z_2)=0$$, then $$\mid z_1-z_2\mid$$ is equal to

Complex Numbers

Consider the complex number $$z_1$$ and $$z_2$$ satisfying the relation $$|z_1+z_2|^2=|z_1|^2+|z_2|^2$$, then one of the possible argument of complex number $$i\dfrac{z_1}{z_2}$$ is,

Complex Numbers

Consider the complex number $$z_1$$ and $$z_2$$ satisfying the relation $$|z_1+z_2|^2=|z_1|^2+|z_2|^2$$, then the possible difference between the argument of $$z_1$$ and $$z_2$$ is,

Complex Numbers

If $$arg (z) < 0$$, then $$arg (-z) - arg (z) =$$

Complex Numbers

If $$x = 9^{1/3} 9^{1/9} 9^{1/27} .... \infty\ \ ,\ y = 4^{1/3} 4^{-1/ 9}4^{1/27} .... \infty$$ and $$z = \displaystyle \sum_{r = 1}^{\infty} (1 + i)^{-r}$$, then $$arg (x + yz)$$ is equal to

Complex Numbers

If z lies on the circle $$\left| z-2i \right| =2\sqrt { 2 } $$ then the value of arg $$\left( \dfrac { z-2 }{ z+2 } \right) $$ is equal to

Complex Numbers

For $$\mid z - 1\mid = 1$$, show that $$tan \left (\dfrac{arg(z - 1)}{z} \right ) - \dfrac{2i}{z} = -i$$

Complex Numbers

The Maximum value of |{Arg}$$(\dfrac{1}{1 - z})$$| for $$\left|z\right|$$ = 1, z $$\neq$$ 1 is given by.(This question is part of matrix match question)

Contact Details