Subjective Type

If $$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 5 & 3 \\ 0 & 2 & 1 \end{bmatrix} $$ find $$A^{-1}$$, using elementary row transformations.

Solution

For using elementary row transformations, we take
$$A= IA$$, where $$I$$ is identity matrix of order $$3 \times 3$$
$$\begin{bmatrix}1 & -1 & 0 \\2 & 5 & 3 \\0 & 2 & 1\end{bmatrix} =\begin{bmatrix} 1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1\end{bmatrix} A$$
Applying $$R_2 \rightarrow R_2 - 2R_1$$, we get
$$\begin{bmatrix}1 & -1 & 0 \\0 & 7 & 3 \\0 & 2 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\-2 & 1 & 0 \\0 & 0 & 1\end{bmatrix} A$$
Applying, $$R_2 \rightarrow R_2 - 3R_3$$, we get
$$\begin{bmatrix}1 & -1 & 0 \\0 & 1 & 0 \\0 & 2 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\-2 & 1 & -3 \\0 & 0 & 1\end{bmatrix} A$$
Applying, $$R_1 \rightarrow R_1 + R_2$$ and $$R_3 \rightarrow R_3 - 2R_2$$,
$$\begin{bmatrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1\end{bmatrix} = \begin{bmatrix}-1 & 1 & -3 \\-2 & 1 & -3 \\4 & -2 & 7\end{bmatrix} A$$

And we know that $$A^{-1}A=I$$
Hence
$$A^{-1} = \begin{bmatrix}-1 & 1 & -3 \\-2 & 1 & -3 \\4 & -2 & 7\end{bmatrix}$$


SIMILAR QUESTIONS

Matrices

Which of the following is the new row that results when you add rows $$1$$ and $$3$$? $$\begin{bmatrix}3&4&2&11\\9&1&0&0\\0&1&0&2\\0&0&6&1\end{bmatrix}$$

Matrices

If $$I=I=\left[ \begin{matrix} 1 \\ 0 \end{matrix}\begin{matrix} 0 \\ 1 \end{matrix} \right] ,j=\left[ \begin{matrix} 0 \\ -1 \end{matrix}\begin{matrix} 1 \\ 0 \end{matrix} \right] and B=\left[ \begin{matrix} cos\theta \\ -sin\theta \end{matrix}\begin{matrix} sin\theta \\ cos\theta \end{matrix} \right] ,$$ then B =

Matrices

Apply the elementary transformation of the following matrix. $$ B = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 5 & 4 \end{bmatrix}, R_{1} \rightarrow R_{1} - R_{2} $$

Matrices

Find the inverse of the matrix $$A=\begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$ by using column transformations.

Matrices

Find inverse, by elementary row operations (if possible), of the following matrices $$\begin{bmatrix} 1 & -3 \\ -2 & 6 \end{bmatrix}$$

Contact Details