Matrices
If $$I=I=\left[ \begin{matrix} 1 \\ 0 \end{matrix}\begin{matrix} 0 \\ 1 \end{matrix} \right] ,j=\left[ \begin{matrix} 0 \\ -1 \end{matrix}\begin{matrix} 1 \\ 0 \end{matrix} \right] and B=\left[ \begin{matrix} cos\theta \\ -sin\theta \end{matrix}\begin{matrix} sin\theta \\ cos\theta \end{matrix} \right] ,$$ then B =
Matrices
Apply the elementary transformation of the following matrix.
$$ B = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 5 & 4 \end{bmatrix}, R_{1} \rightarrow R_{1} - R_{2} $$
Matrices
Find the inverse of the matrix $$A=\begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$ by using column transformations.
Matrices
Find inverse, by elementary row operations (if possible), of the following matrices
$$\begin{bmatrix} 1 & -3 \\ -2 & 6 \end{bmatrix}$$
Matrices
If $$A = \begin{bmatrix}
1 & -1 & 0 \\
2 & 5 & 3 \\
0 & 2 & 1
\end{bmatrix}
$$ find $$A^{-1}$$, using elementary row transformations.