Binomial Theorem
The number of terms in the expansion off $$(1+x)^{101}(1+x^2-x)^{100}$$ in power of x is :
If $$n$$ is even integer and $$a,b,c$$ are distinct, the number of distinct terms in the expansion of $${ \left( a+b+c \right) }^{ n }+{ \left( a+b-c \right) }^{ n }$$ is
Let $$n=2m,m\in N$$
$$\therefore { \left( a+b+c \right) }^{ n }+{ \left( a+b-c \right) }^{ n }={ \left[ \left( a+b \right) +c \right] }^{ 2m }+{ \left[ \left( a+b \right) -c \right] }^{ 2m }\\ =2\left\{ { \left( a+b \right) }^{ 2m }+^{ 2m }{ { C }_{ 2 }{ \left( a+b \right) }^{ 2m-2 }{ c }^{ 2 } }+...+^{ 2m }{ { C }_{ 2m }{ c }^{ 2m } } \right\} $$
Therefore, the number of distinct terms in the expansion
$$\displaystyle =\left( 2m+1 \right) +\left( 2m-1 \right) +...+3+1=\left( \frac { m+1 }{ 1 } \right) .\left( 2m+1+1 \right) $$
$$\displaystyle ={ \left( m+1 \right) }^{ 2 }={ \left( 1+\frac { n }{ 2 } \right) }^{ 2 }={ \left( \frac { n+2 }{ 2 } \right) }^{ 2 }$$
The number of terms in the expansion off $$(1+x)^{101}(1+x^2-x)^{100}$$ in power of x is :
The number of terms in the expansion of $$(x + y+2z)^8$$ is:
The number of dissimilar terms in the expansion of $$(1-3x+3x^2-x^3)^{20}$$ is:
If $$n$$ is an even integer and $$a,b,c$$ are distinct, the number of distinct terms in the expansion of $$(a+b+c)^n+(a+b-c)^n$$ is