Single Choice

The number of terms in the expansion off $$(1+x)^{101}(1+x^2-x)^{100}$$ in power of x is :

A$$302$$
B$$301$$
C$$202$$
Correct Answer
D$$101$$

Solution

$${ (1+x) }^{ 101 }{ (1-x+{ x }^{ 2 }) }^{ 100 }$$ can be written as

$$=(1+x){ (1+x) }^{ 100 }{ (1-x+{ x }^{ 2 }) }^{ 100 }$$

$$=(1+x)[(1+x){ (1-x+{ x }^{ 2 })] }^{ 100 }$$

$$=(1+x){ (1+{ x }^{ 3 }) }^{ 100 }$$

$$={ (1+{ x }^{ 3 }) }^{ 100 }+x{ (1+{ x }^{ 3 }) }^{ 100 }$$

Number of terms in $${ (1+{ x }^{ 3 }) }^{ 100 } = 101$$[terms are $$a_0+a_1x^3+a_2x^6+............+a_100x^{300}$$]

Number of terms in $$x{ (1+{ x }^{ 3 }) }^{ 100 } = 101$$[terms are $$a_0x+a_1x^4+a_2x^7+............+a_100x^{301}$$]

since there are no common terms
.
So, number of terms in $$(1+x){ (1+{ x }^{ 3 }) }^{ 100 }= 101 + 101 =202$$


SIMILAR QUESTIONS

Binomial Theorem

The number of terms in the expansion of $$(x + y+2z)^8$$ is:

Binomial Theorem

The number of dissimilar terms in the expansion of $$(1-3x+3x^2-x^3)^{20}$$ is:

Binomial Theorem

If $$n$$ is an even integer and $$a,b,c$$ are distinct, the number of distinct terms in the expansion of $$(a+b+c)^n+(a+b-c)^n$$ is

Binomial Theorem

If $$n$$ is even integer and $$a,b,c$$ are distinct, the number of distinct terms in the expansion of $${ \left( a+b+c \right) }^{ n }+{ \left( a+b-c \right) }^{ n }$$ is

Contact Details