Subjective Type

If $$p$$ and $$p'$$ be the lengths of perpendiculars from origin to the lines $$x \sec \theta-y \cos\theta=a$$ and $$x \cos \theta-y \sin \theta=a \cos 2\theta$$ respectively, then prove that $$4p^{ 2 }+p' ^{ 2 }=a^{ a }$$.

Solution

$$P=\dfrac { -a }{ \surd \left( \sec ^{ 2 }{ \theta } +\csc ^{ 2 }{ \theta } \right) }$$
$$\therefore\quad 4{ p }^{ 2 }=\dfrac { 4a^{ 2 }\sin ^{ 2 }{ \theta } \cos ^{ 2 }{ \theta } }{ \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } }$$
Or $$4{ p }^{ 2 }={ a }^{ 2 }{ \left( 2\sin { \theta } \cos { \theta } \right) }^{ 2 }{ a }^{ 2 }\sin ^{ 2 }{ 2\theta }$$
$$P'=\dfrac { -a\cos { 2\theta } }{ \surd \left( \cos ^{ 2 }{ 2\theta } +\sin ^{ 2 }{ \theta } \right) }$$
$$\therefore\quad { p' }^{ 2 }={ a }^{ 2 }\cos ^{ 2 }{ 2\theta }$$
$$\therefore\quad 4{ p }^{ 2 }+{ p' }^{ 2 }={ a }^{ 2 }\left( \sin ^{ 2 }{ 2\theta } +\cos ^{ 2 }{ 2\theta } \right) ={ a }^{ 2 }$$


SIMILAR QUESTIONS

Straight Lines and Pair of Straight Lines

Let $$a$$ and $$b$$ be any two numbers satisfying $$\dfrac {1}{a^2}+\dfrac {1}{b^2}=\dfrac {1}{4}$$. Then, the foot of perpendicular from the origin on the variable line, $$\dfrac {x}{a}+\dfrac {y}{b}=1$$, lies on :

Straight Lines and Pair of Straight Lines

The foot of the perpendicular drawn from the origin, on the line, $$3x + y = \lambda (\lambda \neq 0)$$ is $$P$$. If the line meets x-axis at $$A$$ and y-axis at $$B$$, then the ratio $$BP : PA$$ is

Straight Lines and Pair of Straight Lines

The foot of the perpendicular from the point $$(3, 4)$$ on the line $$3x-4y+5=0$$ is:

Straight Lines and Pair of Straight Lines

The ends $$A, B$$ of a straight line segment of constant length $$c$$ slide upon the fixed rectangular axes $$OX$$ & $$OY$$ respectively. If the rectangle $$OAPB$$ be completed then, the locus of the foot of the perpendicular drawn from $$P$$ to $$AB$$ is ?

Straight Lines and Pair of Straight Lines

A straight line passes through a fixed point $$(h,k)$$. Find the locus of feet of the perpendiculars, drawn from the origin to it.

Straight Lines and Pair of Straight Lines

Prove that the product of the perpendiculars from the point $$ \left[ \pm \sqrt { \left( { a }^{ 2 }-{ b }^{ 2 } \right) } ,0 \right]$$ to the line $$\dfrac{ x }{ a }\cos \theta+\dfrac{ y }{ b }\sin \theta=1$$ is $$b^{ 2 }$$.

Straight Lines and Pair of Straight Lines

If $$x \cos \alpha + y \sin \alpha = p$$ where, $$p=\dfrac{ \sin^{ 2 }\alpha }{ \cos \alpha }$$ be a straight line, prove that perpendiculars $$p_{ 1 },p_{ 2 }$$ and $$ p_{ 3 }$$ on this line from the points $$(m^{ 2 }, 2m), (mm,m+m)$$ and $$(m^{ 2 },2m)$$ respectively are in geometrical progression.

Straight Lines and Pair of Straight Lines

Find the co-ordinates of the foot of the perpendicular drawn from the point$$(2,3)$$to the line $$y=3x+4$$

Straight Lines and Pair of Straight Lines

Let $$\triangle ABC$$ be a triangle with $$AB = AC$$. If $$D$$ is the midpoint of $$BC$$, $$E$$ is the foot of the perpendicular drawn from $$D$$ to $$AC$$ and $$F$$ the mid-point of $$DE$$. Then $$AF$$ is perpendicular to

Straight Lines and Pair of Straight Lines

The vertices of a triangle OBC are 0(0,0), B (-3, -1), C (- 1,- 3). Find the equation of the line parallel to BC and intersecting the sides OB and OC and whose perpendicular distance from the point (0 , 0) is 1/2.

Contact Details