Single Choice

Let $$w(Im w\neq 0)$$ be a complex number. Then the set of all complex number z satisfying the equation $$w-\overline wz=k(1-z)$$, for some real number k, is :

A$$\left \{z:|z|=1 \right \}$$
B$$\left \{z:z=\overline z \right \}$$
C$$\left \{z:z\neq 1 \right \}$$
D$$\left \{z:|z|=1, z\neq 1 \right \}$$
Correct Answer

Solution

let 'w' be $$a+ib$$ and z be $$'x+iy'$$

$$a+ib-(a-ib)(x+iy)=k(1-x-iy)$$

$$a+ib-[ax+ayi-bxi+by]=k(1-x)-iky$$

$$a+ib-ax-ayi+bxi-by=k(1-x)-kyi$$

$$(a-ax-by)+i(b-ay+bx)=k(1-x)-kyi$$
.
comparing real and imaginary coefficients from both sides.

$$k=\dfrac {(a-ax-by)}{(1-x)}, k=\left (\dfrac {ay-bx-b}{y}\right )$$

$$\dfrac {a-ax-by}{1-x}=\dfrac {ay-bx-b}{y}$$

$$ay-axy-by^2=ay-bx-b-ayx+bx^2+bx$$

$$-by^2=bx^2-b$$

$$b=by^2+bx^2$$

$$x^2+y^2=1$$

$$|z|=1$$


SIMILAR QUESTIONS

Complex Numbers

The number of solution of the equation $${z}^2=\overline{z}$$ is

Complex Numbers

If $$z_1$$, $$z_2$$ are two complex number such that $$|z_1|=|z_2|$$ and arg $$z_1+ $$arg $$ z_2=0$$ then $$z_1$$, $$z_2$$ and

Complex Numbers

If $$z_1$$, $$z_2$$are conjugate complex numbers and arg $$\left ( z_1z_2 \right )=$$

Complex Numbers

The least positive integer $$n$$ for which $$\left(\displaystyle\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)^n=1$$, is

Complex Numbers

Let $$z$$ and $$w$$ be two non-zero complex numbers such that $$|z|=|w|$$ and $$arg(z)+arg(w)=\pi $$, then $$z $$ equals

Complex Numbers

Let $$z_1$$ and $$z_2$$ be complex numbers such that $$z_1 \neq z_2$$ and $$\left|z_1\right| = \left|z_2\right|$$. If $$z_1$$ has positive real part and $$z_2$$ has negative imaginary part, then $$(z_1 + z_2)/(z_1 - z_2)$$ may be

Complex Numbers

If α is a complex constant such that az2+z+ ˉ α =0 has a real root then

Complex Numbers

The complex number $$\sin x + i \cos 2x$$ and $$\cos x - i \sin 2x$$ are conjugate to each other for :`

Complex Numbers

(a) Let $$n=a+i b$$ be a complex number, where $$a$$ and $$b$$ are real (positive or negative) numbers. Show that the product $$n \overline n$$ is always a positive real number. (b) Let $$m=c+i d$$ be another complex number. Show that $$|n m|=|n||m|$$

Complex Numbers

For any two complex numbers $$z_1, z_2$$ and any real numbers a & b; $$|az_1 - bz_2|^2 + |bz_1 + az_2|^2 = k(a^2 + b^2) (|z_1|^2 + |z_2|^2)$$. What is the value of $$2k$$?

Contact Details