Theory of Equations
Solve the following equation: $$x^{3} - 18x = 35$$.
Solve the following equation: $$x^{3} + 21x + 342 = 0$$.
Given equation, $$x^3+21x+342=0$$
$$\Rightarrow x^3 - 6x^2 + 6x^2 + 57x -36x + 342 = 0$$
$$\Rightarrow (x+6)(x^2-6x+57) = 0$$
Hence, $$x+6=0$$ and $$x^2-6x+57=0$$
Therefore, $$ x= -6 \,\,\text{and} \,\, x = \dfrac{6\pm\sqrt{36-4\times57}}{2} = 3\pm4\sqrt{3}i$$
Thus roots of the given equation are $$x = -6, 3\pm4\sqrt{3}i $$
Solve the following equation: $$x^{3} - 18x = 35$$.
Solve the following equation: $$x^{3} + 72x - 1720 = 0$$.
Solve the following equation: $$x^{3} + 63x - 316 = 0$$.
Solve the following equations: $$x^{3} - 15x^{2} - 33x + 847 = 0$$.
Find the roots $$\alpha, \beta, \gamma$$ of $$x^{3}-11x^{2} +36x - 36 = 0$$ if $$\frac{2}{\beta} = \frac{1}{\alpha} + \frac{1}{\gamma}$$