Single Choice

Tangents are drawn to $$x^2+y^2=16$$ from the point $$P(0,h)$$. These tangents meet the x-axis at $$A$$ and $$B$$. If the area of $$\Delta PAB$$ is minimum, then $$h=?$$

A$$12\sqrt 2$$
B$$6\sqrt 2$$
C$$8\sqrt 2$$
D$$4\sqrt 2$$
Correct Answer

Solution

Radius of circle $$x^2+y^2=16$$ is $$4$$ with centre at $$(0,0)$$
Let $$M$$ be $$(x_1,y_1)$$
$$\therefore 2x+2y\cfrac{dy}{dx}=0 \\ \Rightarrow \cfrac{dy}{dx}=\cfrac{-x}{y} \\ \therefore\left| \cfrac{dy}{dx}\right|_{at\;x=x_1,y_1}=\cfrac{-x_1}{y_1}$$
Equation of line PB:
$$(y-y_1)=\cfrac{-x_1}{y_1}(x-x_1)$$
Put $$(0,h)$$\Rightarrow h-y_1=\cfrac{-x_1}{y_1}(0-x_1) \\ \Rightarrow h-y_1=\cfrac{{x_1}^2}{y_1} \Rightarrow h=\cfrac{{x_1}^2}{y_1}+y_1 \\ \Rightarrow h=\cfrac{{x_1}^2+{y_1}^2}{y_1}=\cfrac{16}{y_1} [\because x^2+y^2=16]$$
Put $$y=0$$ in line PB:
$$-y_1=\cfrac{-x_1}{y_1}(x-x_1)\Rightarrow \cfrac{{y_1}^2}{x_1}+x_1=x \\ x=\cfrac{{x_1}^2+{y_1}^2}{x_1}=\cfrac{16}{x_1}$$
$$\therefore$$ Coordinates of $$B\equiv \left( \cfrac { 16 }{ { x }_{ 1 } } ,0 \right) $$
by Similarity,
Coordinates of $$A\equiv \left( \cfrac { 16 }{ { x }_{ 1 } } ,0 \right) $$
$$\therefore \triangle PAB=\cfrac { 1 }{ 2 } \times h\times \left( \cfrac { 32 }{ { x }_{ 1 } } \right) =\cfrac { 16h }{ { x }_{ 1 } } \\ =\cfrac { 16 }{ { x }_{ 1 } } \times \cfrac { 16 }{ { y }_{ 1 } } =\cfrac { { (16) }^{ 2 } }{ { x }_{ 1 }{ y }_{ 1 } } \\ =\cfrac { { (16) }^{ 2 } }{ { x }_{ 1 }\sqrt { 16-{ { x }_{ 1 } }^{ 2 } } } $$
For $$\triangle PAB$$ to be minimum, $${ x }_{ 1 }\sqrt { 16-{ { x }_{ 1 } }^{ 2 } } $$ has to be maximum.
$$g(x)=x\sqrt { 16-{ x }^{ 2 } } \\ \Rightarrow g'(x)=\sqrt { 16-{ x }^{ 2 } } +\cfrac { x(-2x) }{ 2\sqrt { 16-{ x }^{ 2 } } } =0\\ \Rightarrow \sqrt { 16-{ x }^{ 2 } } =\cfrac { { x }^{ 2 } }{ \sqrt { 16-{ x }^{ 2 } } } \Rightarrow 16-{ x }^{ 2 }={ x }^{ 2 }\\ \Rightarrow { x }_{ 1 }=2\sqrt { 2 } \Rightarrow { y }_{ 1 }=\sqrt { 16-{ x }^{ 2 } } =2\sqrt { 2 } \\ \therefore h=\cfrac { 16 }{ { y }_{ 1 } } =\cfrac { 16 }{ 2\sqrt { 2 } } =4\sqrt { 2 } $$
Hence, correct answer is $$4\sqrt{2}$$


SIMILAR QUESTIONS

Area of Bounded Regions

A helicopter is flying along the curve given by $$y - x^{3/2} =7, (x \ge 0)$$. A solider positioned at the point $$\left(\dfrac{1}{2}, 7\right)$$ wants to shoot down the helicopter when it is nearest to him. Then this nearest distance is:

Area of Bounded Regions

A tangent to the curve, $$y=f(x)$$ at $$P(x, y)$$ meets $$x-$$axis at $$A$$ and $$y-$$axis at $$B$$. If $$AP:BP=1:3$$ and $$f(1)=1$$, then the curve also passes through the point.

Area of Bounded Regions

Match List I with List II and select the correct answer using the code given below the lists: List I List II (A) $$f(x) = \cos x$$ $$1.$$ The graph cuts y-axis in infinite number of points (B) $$f(x) = ln \ x$$ $$2.$$ The graph cut x-axis in two points. (C) $$f(x) = x^{2} - 5x + 4$$ $$3.$$ The graph cuts y-axis in only one point (D) $$f(x) = e^{x}$$ $$4.$$ The graph cuts x-axis in only one point $$5.$$ The graph cuts x-axis in infinite number of points

Area of Bounded Regions

Let $$f(x)=\dfrac{\sin \pi X}{x^2},x>0$$ Let $$x_1

Area of Bounded Regions

If the normal to the curve $$y=f(x)$$ at the point $$(3,\,4)$$ make an angle $$\dfrac{3\pi}{4}$$ with the positive x-axis, then $$f'(3)$$ is

Area of Bounded Regions

The points at which the tangents to the curve $$y=x^3-12x+18$$ are parallel to x-axis are?

Area of Bounded Regions

Let $$y = f(x)$$ be a parabola, having its axis parallel to y-axis, which is touched by the line $$y =x$$ at $$x = 1$$, then

Area of Bounded Regions

Radius of the circle that passes through origin and touches the parabola $$y^2 = 4ax$$ at the point $$(a, 2a)$$ is

Area of Bounded Regions

The volume of the greatest cylinder which can be inscribed in a cone of height $$30cm$$ and semi-vertical angle $$30^0$$ is

Area of Bounded Regions

A rectangle is inscribed in an equilateral triangle of side length $$2a$$ units. The maximum area of this rectangle can be

Contact Details