Single Choice

The sum of the co-efficients of all odd degree terms in the expansion of $$\left(x + \sqrt {x^{3} - 1}\right)^{5} + (x - \sqrt {x^{3} - 1})^{5}, (x > 1)$$ is

A$$1$$
B$$2$$
Correct Answer
C$$-1$$
D$$0$$

Solution

$$(x+\sqrt {x^3-1})^5+(x-\sqrt {x^3-1})^5$$

$$(a+b)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5 -------(i)$$

$$(a-b)^5=a^5-5a^4b+10a^3b^2-10a^2b^3+5ab^4-b^5 -------(ii)$$

$$(a+b)^5+(a-b)^5=2[a^5+10a^3b^2+5ab^4]$$

$$=2[x^5+10x^3(x^3-1)+5x(x^3-1)^4]$$

$$=2[x^5+10x^6-10x^3+5x(x^6-2x^3+1)]$$

$$=2x^5+20x^6-20x^3+10x^7-20x^4+10x$$

Here all the co-efficient of the above equation are odd terms coefficients of even terms are cancelled out.
So, sum of coefficients $$\Rightarrow2+20-20+10-20+10=2$$


SIMILAR QUESTIONS

Binomial Theorem

Sum of the coefficients of $$ (1+x)^n $$ is always a

Binomial Theorem

The sum of the coefficients of even powers of $$x$$ in the expansion of $$ (1+x+x^2+x^3)^5 $$ is

Binomial Theorem

Sum of the coefficients of $$ (1 - x)^{25} $$ is

Binomial Theorem

Let $$(x + 10)^{50} + (x - 10)^{50} = a_0 + a_1x + a_2x^2 + .... + a_{50} x^{50}$$, for all $$x \in R$$ then $$\dfrac{a_2}{a_0}$$ is equal to:-

Binomial Theorem

Find the sum of coefficients in the expansion of $$\left(1-\dfrac 2x+\dfrac {4}{x^2}\right)^n$$ given that the number of terms are $$28$$

Binomial Theorem

The value of $$\displaystyle \sum_{r = 1}^{15} r^{2} \left (\dfrac {^{15}C_{r}}{^{15}C_{r - 1}}\right )$$ is equal to:

Binomial Theorem

The sum of coefficient of integral powers of $$x$$ in the binomial expansion of $$(1-2\sqrt x)^{50}$$ is :

Binomial Theorem

If the sum of odd numbered terms and the sum of even numbered terms in the expansion of $$(x + a)^{n}$$ are $$A$$ and $$B$$ respectively, then the value of $$(x^{2} - a^{2})^{n}$$ is

Binomial Theorem

Let $$X = (^{10}C_{1})^{2} + (^{10}C_{2})^{2} + 3(^{10}C_{3})^{2} + .... + 10 (^{10}C_{10})^{2}$$, where $$^{10}C_{r}, r\epsilon \left \{1, 2, ..., 10\right \}$$ denote binomial coefficients. Then, the value of $$\dfrac {1}{1430}X$$ is

Binomial Theorem

The sum of the coefficients of even powers of $$x$$ in the expansion of $$ (1+x+x^2+x^3)^5 $$ is

Contact Details