Physical World
A mechanical wave propagates in a medium along the X-axis. The particles of the medium
What should one do if he wishes to increase the pitch of a string type instrument. $$1$$. Increase the length of the string used $$2$$. Decrease the gauge of the string used $$3$$. Loosen the string $$4$$. Tighten the string
Thicker, tighter strings, have a more "focussed" sound. They reach their resonant frequency more quickly, because the extra tension leaves them less scope to flap around.
Thicker, tighter strings, plucked the same distance, are louder, because they contain more energy. There is more kinetic energy to be transmitted to the sounding board.
A mechanical wave propagates in a medium along the X-axis. The particles of the medium
A transverse wave travels along the Z-axis. The particles of the medium must move
The equation of a wave travelling on a string stretched along the X-axis is given by $$y = Ae^{\left(\dfrac{x}{a} + \dfrac{t}{T} \right)^2}$$ In which direction is the wave travelling?
Figure shows a wave pulse at $$t = 0$$. The pulse moves to the right with a speed of $$10 cm/ s$$. Sketch the shape of the string at $$t = 1 s, 2 s $$ and $$3s$$.
A pulse travelling on a string is represented by the function $$y = \dfrac{a^3}{(x - vt)^2 + a^2}$$ Where $$a = 5 mm$$ and $$v = 20 cm /s$$. Sketch the shape of the string at $$t = 0, \ 1 s$$ and $$2 s$$. Take $$x = 0$$ in the middle of the string.
Figure shows two wave pulse at $$t = 0$$ travelling on a string in opposite directions with the same wave speed $$50 cm s^{-1}$$. Sketch the shape of the string at $$t = 4 ms, 6 ms, 8 ms$$ and $$12 ms$$.
The equation of a transverse wave is $$z=a\ \sin \left\{\omega t-\dfrac {k}{2}(x+y)\right\}$$ , the direction of propagation of wave which the $$x-$$axis is :
A single pulse, given by $$ h(x-5.0 t), $$ is shown in Fig. $$ 16-45 $$ for $$ t=0 . $$ The scale of the vertical axis is set by $$ h_{s}=2 . $$ Here $$ x $$ is in centimeters and $$ t $$ is in seconds.What is direction of travel of the pulse?
The transverse wave shown is travelling from right to left in a medium. The direction of the instantaneous velocity of the medium at point $$P$$ is:
A wave is moving towards positive x-axis as shown in figure. Then the point(s) at which acceleration and velocity of particle are parallel to each other