Exponents and Powers
Express as a pure surd: $$x\sqrt{x+y}$$
Find the true statement for operations on surds
a. $$a\sqrt{b} \pm c\sqrt{b} = (a\pm c)\sqrt{b}$$
b. $$\sqrt[n]{a} \times \sqrt[m]{y} \neq \sqrt[mn]{ay} $$ (As both bases are different)
c. $$\sqrt[n]{x} \div \sqrt[m]{y} = \dfrac{ \sqrt[n]{x}}{ \sqrt[m]{y}}$$
d. $$\sqrt[n]{a} \pm \sqrt[n]{a} \neq \sqrt[n]{a\pm b}$$
Express as a pure surd: $$x\sqrt{x+y}$$
Express as a pure surd: $$2\sqrt [ 3 ]{ 4 } $$
Express as a pure surd: $$3\sqrt [ 4 ]{ 5 }$$
Express as a pure surd: $$a \sqrt [ 3 ]{ { b }^{ 2 } } $$
Express as a mixed surd: $$\sqrt{80}$$
Express as a mixed surd: $$\sqrt [ 3 ]{ 256} $$
Express as a mixed surd: $$\sqrt [ 4 ]{ 1280 } $$
Express as a mixed surd: $$\sqrt [ 5 ]{ 320 } $$
$$\sqrt{12\sqrt{5}+2\sqrt{55}}=$$...........
If $$x=\sqrt [ 3 ]{ 9 } ,y=\sqrt [ 4 ]{ 11 } ,z=\sqrt [ 6 ]{ 17 } $$ then: