Single Choice

$$\sqrt{12\sqrt{5}+2\sqrt{55}}=$$...........

A$$(\sqrt{11}+1)\sqrt [ 4 ]{ 5 } $$
Correct Answer
B$$\sqrt [ 4 ]{ 5 }(1+\sqrt{5})$$
C$$\sqrt [ 4 ]{ 5 }(\sqrt{11}+\sqrt{5})$$
D$$\sqrt{5}(\sqrt{11}+1)$$

Solution

$$\sqrt{12\sqrt{5}+2\sqrt{55}}=\sqrt{12\sqrt{5}+2\sqrt{11}\sqrt{5}}$$
$$\Rightarrow \sqrt[4]{5}\sqrt{12+\sqrt[2]{11}}$$
$$\sqrt[4]{5}\sqrt{(\sqrt{11})^{2}+2\sqrt{11}+1^{2}}$$
$$\Rightarrow \sqrt[4]{5}\sqrt{(\sqrt{11}+1)^{2}}$$
$$\Rightarrow \boxed{(\sqrt{11}+1)\sqrt[4]{5}}$$


SIMILAR QUESTIONS

Exponents and Powers

Express as a pure surd: $$x\sqrt{x+y}$$

Exponents and Powers

Express as a pure surd: $$2\sqrt [ 3 ]{ 4 } $$

Exponents and Powers

Express as a pure surd: $$3\sqrt [ 4 ]{ 5 }$$

Exponents and Powers

Express as a pure surd: $$a \sqrt [ 3 ]{ { b }^{ 2 } } $$

Exponents and Powers

Express as a mixed surd: $$\sqrt{80}$$

Exponents and Powers

Express as a mixed surd: $$\sqrt [ 3 ]{ 256} $$

Exponents and Powers

Express as a mixed surd: $$\sqrt [ 4 ]{ 1280 } $$

Exponents and Powers

Express as a mixed surd: $$\sqrt [ 5 ]{ 320 } $$

Exponents and Powers

If $$x=\sqrt [ 3 ]{ 9 } ,y=\sqrt [ 4 ]{ 11 } ,z=\sqrt [ 6 ]{ 17 } $$ then:

Exponents and Powers

Find the true statement for operations on surds

Contact Details