Exponents and Powers
Express as a pure surd: $$x\sqrt{x+y}$$
$$\sqrt{12\sqrt{5}+2\sqrt{55}}=$$...........
$$\sqrt{12\sqrt{5}+2\sqrt{55}}=\sqrt{12\sqrt{5}+2\sqrt{11}\sqrt{5}}$$
$$\Rightarrow \sqrt[4]{5}\sqrt{12+\sqrt[2]{11}}$$
$$\sqrt[4]{5}\sqrt{(\sqrt{11})^{2}+2\sqrt{11}+1^{2}}$$
$$\Rightarrow \sqrt[4]{5}\sqrt{(\sqrt{11}+1)^{2}}$$
$$\Rightarrow \boxed{(\sqrt{11}+1)\sqrt[4]{5}}$$
Express as a pure surd: $$x\sqrt{x+y}$$
Express as a pure surd: $$2\sqrt [ 3 ]{ 4 } $$
Express as a pure surd: $$3\sqrt [ 4 ]{ 5 }$$
Express as a pure surd: $$a \sqrt [ 3 ]{ { b }^{ 2 } } $$
Express as a mixed surd: $$\sqrt{80}$$
Express as a mixed surd: $$\sqrt [ 3 ]{ 256} $$
Express as a mixed surd: $$\sqrt [ 4 ]{ 1280 } $$
Express as a mixed surd: $$\sqrt [ 5 ]{ 320 } $$
If $$x=\sqrt [ 3 ]{ 9 } ,y=\sqrt [ 4 ]{ 11 } ,z=\sqrt [ 6 ]{ 17 } $$ then:
Find the true statement for operations on surds