Single Choice

If $$x=\sqrt [ 3 ]{ 9 } ,y=\sqrt [ 4 ]{ 11 } ,z=\sqrt [ 6 ]{ 17 } $$ then:

A$$x> y> z$$
Correct Answer
B$$y> z> x$$
C$$z> y>x$$
D$$x< z< y$$

Solution

$$x=9^{1/3}=\sqrt[12]{9y}$$
$$y=\sqrt[4]{11}=\sqrt[12]{11^{3}}$$
$$z=\sqrt[6]{17}=\sqrt[12]{17^{2}}$$
As $$9^{4} > 11^{3} > 17^{2}$$
$$\Rightarrow \boxed{x > y > z}$$


SIMILAR QUESTIONS

Exponents and Powers

Express as a pure surd: $$x\sqrt{x+y}$$

Exponents and Powers

Express as a pure surd: $$2\sqrt [ 3 ]{ 4 } $$

Exponents and Powers

Express as a pure surd: $$3\sqrt [ 4 ]{ 5 }$$

Exponents and Powers

Express as a pure surd: $$a \sqrt [ 3 ]{ { b }^{ 2 } } $$

Exponents and Powers

Express as a mixed surd: $$\sqrt{80}$$

Exponents and Powers

Express as a mixed surd: $$\sqrt [ 3 ]{ 256} $$

Exponents and Powers

Express as a mixed surd: $$\sqrt [ 4 ]{ 1280 } $$

Exponents and Powers

Express as a mixed surd: $$\sqrt [ 5 ]{ 320 } $$

Exponents and Powers

$$\sqrt{12\sqrt{5}+2\sqrt{55}}=$$...........

Exponents and Powers

Find the true statement for operations on surds

Contact Details