Exponents and Powers
Express as a pure surd: $$x\sqrt{x+y}$$
If $$x=\sqrt [ 3 ]{ 9 } ,y=\sqrt [ 4 ]{ 11 } ,z=\sqrt [ 6 ]{ 17 } $$ then:
$$x=9^{1/3}=\sqrt[12]{9y}$$
$$y=\sqrt[4]{11}=\sqrt[12]{11^{3}}$$
$$z=\sqrt[6]{17}=\sqrt[12]{17^{2}}$$
As $$9^{4} > 11^{3} > 17^{2}$$
$$\Rightarrow \boxed{x > y > z}$$
Express as a pure surd: $$x\sqrt{x+y}$$
Express as a pure surd: $$2\sqrt [ 3 ]{ 4 } $$
Express as a pure surd: $$3\sqrt [ 4 ]{ 5 }$$
Express as a pure surd: $$a \sqrt [ 3 ]{ { b }^{ 2 } } $$
Express as a mixed surd: $$\sqrt{80}$$
Express as a mixed surd: $$\sqrt [ 3 ]{ 256} $$
Express as a mixed surd: $$\sqrt [ 4 ]{ 1280 } $$
Express as a mixed surd: $$\sqrt [ 5 ]{ 320 } $$
$$\sqrt{12\sqrt{5}+2\sqrt{55}}=$$...........
Find the true statement for operations on surds