Matrices
Let $$P$$ and $$Q$$ be 2*2 matrices. Consider the statements. $$PQ=0 \Rightarrow 1) P=0$$ or $$Q=0$$ or $$\mathrm{both}$$ 2) $$PQ=I_{2}\Rightarrow P=Q^{-1}$$ 3) $$( P+Q )^{2}=P^{2}+2PQ+Q^{2} $$
If A=[ 1 2 2 2 1 2 2 2 1 ], then show that A2−4A−5I=0, where I and 0 are the unit matrix and the null matrix of order 3 , respectively. Use this result to find A−1.
Given $$A=\left[ \begin{matrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{matrix} \right] $$
$${ A }^{ 2 }=\left[ \begin{matrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{matrix} \right] \left[ \begin{matrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{matrix} \right] $$
$$\therefore { A }^{ 2 }=\left[ \begin{matrix} 1+4+4 & 2+2+4 & 2+4+2 \\ 2+2+4 & 4+1+4 & 4+2+2 \\ 2+4+2 & 4+2+2 & 4+4+1 \end{matrix} \right] $$
$$\therefore { A }^{ 2 }=\left[ \begin{matrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{matrix} \right] $$
$$\therefore { A }^{ 2 }-4A-5I=\left[ \begin{matrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{matrix} \right] -4\left[ \begin{matrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{matrix} \right] -5\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] $$
$$=\left[ \begin{matrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{matrix} \right] -\left[ \begin{matrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{matrix} \right] -\left[ \begin{matrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{matrix} \right] $$
$$=\left[ \begin{matrix} 9-4-5 & 8-8-0 & 8-8-0 \\ 8-8-0 & 9-4-5 & 8-8-0 \\ 8-8-0 & 8-8-0 & 9-4-5 \end{matrix} \right] $$
$$=\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{matrix} \right] $$
$$\therefore { A }^{ 2 }-4A-5I=0$$
Multiply both sides by $${ A }^{ -1 }$$, we get,
$${ A }-4-5I.{ A }^{ -1 }=0$$
$$\therefore { A }-4-5{ A }^{ -1 }=0$$
$$\therefore 5{ A }^{ -1 }={ A }-4I$$
$$\therefore { A }^{ -1 }=\frac { 1 }{ 5 } \left( { A }-4I \right) $$
$$\therefore { A }^{ -1 }=\frac { 1 }{ 5 } \left\{ \left[ \begin{matrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{matrix} \right] -4\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] \right\} $$
$$\therefore { A }^{ -1 }=\frac { 1 }{ 5 } \left\{ \left[ \begin{matrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{matrix} \right] -\left[ \begin{matrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{matrix} \right] \right\} $$
$$\therefore { A }^{ -1 }=\frac { 1 }{ 5 } \left[ \begin{matrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{matrix} \right] $$
Let $$P$$ and $$Q$$ be 2*2 matrices. Consider the statements. $$PQ=0 \Rightarrow 1) P=0$$ or $$Q=0$$ or $$\mathrm{both}$$ 2) $$PQ=I_{2}\Rightarrow P=Q^{-1}$$ 3) $$( P+Q )^{2}=P^{2}+2PQ+Q^{2} $$
The inverse of a skew symmetric matrix (if it exists) is
If $$A = \begin{pmatrix} 2& 3\\ -9 & 5\end{pmatrix} - \begin{pmatrix}1 & 5\\ 7 & -1\end{pmatrix}$$ then find the additive inverse of $$A$$
The inverse of the matrix $$\begin{bmatrix} 1& 0 & 0\\ 3 & 3 & 0\\ 5 & 2 & -1\end{bmatrix}$$ is
If $$A$$ and $$B$$ are square matrices of the same order and $$A$$ is non singular, then for a positive integer $$n$$, $$\\ \\ ({ { A }^{ -1 }BA) }^{ n }$$ is equal to
The inverse of a skew-symmetric matrix of an odd order is
A is an involuntart matrix given by $$ A\quad =\quad \left[ \begin{matrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{matrix} \right] $$, then the inverse of A/2 will be
If $$ A ( \alpha , \beta ) = \left[ \begin{matrix} cos \alpha &sin \alpha & 0 \\ -sin\alpha & cos \alpha &0 \\ 0 &0 & e^{ \beta} \end{matrix} \right] $$ then $$ A ( \alpha , \beta)^{-1} $$ is equal to
$$ (-A)^{-1} $$ is always equal to (where A is $$ n^{th} $$ order square matrix )
The sum of the elements of the matrix $$U^{-1} $$ is