Single Choice

The inverse of the matrix $$\begin{bmatrix} 1& 0 & 0\\ 3 & 3 & 0\\ 5 & 2 & -1\end{bmatrix}$$ is

A$$-\dfrac {1}{3}\begin{bmatrix} -3& 0 & 0\\ 3 & 1 & 0\\ 9 & 2 & -3\end{bmatrix}$$
B$$-\dfrac {1}{3}\begin{bmatrix} -3& 0 & 0\\ 3 & -1 & 0\\ -9 & -2 & 3\end{bmatrix}$$
Correct Answer
C$$-\dfrac {1}{3}\begin{bmatrix} 3& 0 & 0\\ 3 & -1 & 0\\ -9 & -2 & 3\end{bmatrix}$$
D$$-\dfrac {1}{3}\begin{bmatrix} -3& 0 & 0\\ -3 & -1 & 0\\ -9 & -2 & 3\end{bmatrix}$$

Solution

$$A = \begin{bmatrix} 1& 0 & 0\\ 3 & 3 & 0\\ 5 & 2 & -1\end{bmatrix} \quad \quad |A| = -3\neq 0$$
$$\therefore A^{-1}$$ exist
$$A^{-1} = \dfrac {1}{|A|}Adj\ A$$
$$Adj(A)=$$ Transpose of co-factor of $$A$$
$$M_{11}=(-1)^{1+1}(-3-0)=-3$$, $$M_{12}=(-1)^{1+2}(-3-0)=3$$, $$M_{13}=(-1)^{1+3}(6-15)=-9$$
$$M_{21}=(-1)^{2+1}(0-0)=0$$, $$M_{22}=(-1)^{2+2}(-1+0)=-1$$, $$M_{23}=(-1)^{2+3}(2-0)=-2$$
$$M_{31}=(-1)^{3+1}(0-0)=0$$, $$M_{32}=(-1)^{3+2}(0-0)=0$$, $$M_{33}=(-1)^{3+3}(3-0)=3$$
$$Adj(A)= \begin{bmatrix} -3& 0 & 0\\ 3 & -1 & 0\\ -9 & -2 & 3\end{bmatrix}$$
$$\therefore A^{-1}= -\dfrac {1}{3}\begin{bmatrix} -3& 0 & 0\\ 3 & -1 & 0\\ -9 & -2 & 3\end{bmatrix}$$


SIMILAR QUESTIONS

Matrices

Let $$P$$ and $$Q$$ be 2*2 matrices. Consider the statements. $$PQ=0 \Rightarrow 1) P=0$$ or $$Q=0$$ or $$\mathrm{both}$$ 2) $$PQ=I_{2}\Rightarrow P=Q^{-1}$$ 3) $$( P+Q )^{2}=P^{2}+2PQ+Q^{2} $$

Matrices

The inverse of a skew symmetric matrix (if it exists) is

Matrices

If $$A = \begin{pmatrix} 2& 3\\ -9 & 5\end{pmatrix} - \begin{pmatrix}1 & 5\\ 7 & -1\end{pmatrix}$$ then find the additive inverse of $$A$$

Matrices

If $$A$$ and $$B$$ are square matrices of the same order and $$A$$ is non singular, then for a positive integer $$n$$, $$\\ \\ ({ { A }^{ -1 }BA) }^{ n }$$ is equal to

Matrices

The inverse of a skew-symmetric matrix of an odd order is

Matrices

If A=[ 1 2 2 2 1 2 2 2 1 ], then show that A2−4A−5I=0, where I and 0 are the unit matrix and the null matrix of order 3 , respectively. Use this result to find A−1.

Matrices

A is an involuntart matrix given by $$ A\quad =\quad \left[ \begin{matrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{matrix} \right] $$, then the inverse of A/2 will be

Matrices

If $$ A ( \alpha , \beta ) = \left[ \begin{matrix} cos \alpha &sin \alpha & 0 \\ -sin\alpha & cos \alpha &0 \\ 0 &0 & e^{ \beta} \end{matrix} \right] $$ then $$ A ( \alpha , \beta)^{-1} $$ is equal to

Matrices

$$ (-A)^{-1} $$ is always equal to (where A is $$ n^{th} $$ order square matrix )

Matrices

The sum of the elements of the matrix $$U^{-1} $$ is

Contact Details