Matrices
The inverse of a skew symmetric matrix (if it exists) is
Let $$P$$ and $$Q$$ be 2*2 matrices. Consider the statements. $$PQ=0 \Rightarrow 1) P=0$$ or $$Q=0$$ or $$\mathrm{both}$$ 2) $$PQ=I_{2}\Rightarrow P=Q^{-1}$$ 3) $$( P+Q )^{2}=P^{2}+2PQ+Q^{2} $$
1) Let $$P=\begin{pmatrix} 1 & 3 \\ -1 & -3 \end{pmatrix},Q=\begin{pmatrix} 3 & -1 \\ -1 & \frac { 1 }{ 3 } \end{pmatrix}$$
Now,$$ PQ=\begin{pmatrix} 1 & 3 \\ -1 & -3 \end{pmatrix}\begin{pmatrix} 3 & -1 \\ -1 & \frac { 1 }{ 3 } \end{pmatrix}$$
$$=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
Here , $$PQ=0$$ but neither $$P=0$$ nor $$Q=0$$
2) $$PQ=I_{2}$$
$$\Rightarrow (PQ){ Q }^{ -1 }={ I_{ 2 }Q }^{ -1 }$$
$$\Rightarrow P(Q{ Q }^{ -1 })={ Q }^{ -1 }$$
$$\Rightarrow P{I}_{2}={ Q }^{ -1 }$$
$$\Rightarrow P={ Q }^{ -1 }$$
3) $${ (P+Q) }^{ 2 }=(P+Q)(P+Q)$$
$$={ P }^{ 2 }+PQ+QP+{ Q }^{ 2 }$$
In general matrix multiplication is not commutative i.e. $$PQ\ne QP$$
Hence, $${ (P+Q) }^{ 2 }\neq { P }^{ 2 }+2PQ+{ Q }^{ 2 }$$
The inverse of a skew symmetric matrix (if it exists) is
If $$A = \begin{pmatrix} 2& 3\\ -9 & 5\end{pmatrix} - \begin{pmatrix}1 & 5\\ 7 & -1\end{pmatrix}$$ then find the additive inverse of $$A$$
The inverse of the matrix $$\begin{bmatrix} 1& 0 & 0\\ 3 & 3 & 0\\ 5 & 2 & -1\end{bmatrix}$$ is
If $$A$$ and $$B$$ are square matrices of the same order and $$A$$ is non singular, then for a positive integer $$n$$, $$\\ \\ ({ { A }^{ -1 }BA) }^{ n }$$ is equal to
The inverse of a skew-symmetric matrix of an odd order is
If A=[ 1 2 2 2 1 2 2 2 1 ], then show that A2−4A−5I=0, where I and 0 are the unit matrix and the null matrix of order 3 , respectively. Use this result to find A−1.
A is an involuntart matrix given by $$ A\quad =\quad \left[ \begin{matrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{matrix} \right] $$, then the inverse of A/2 will be
If $$ A ( \alpha , \beta ) = \left[ \begin{matrix} cos \alpha &sin \alpha & 0 \\ -sin\alpha & cos \alpha &0 \\ 0 &0 & e^{ \beta} \end{matrix} \right] $$ then $$ A ( \alpha , \beta)^{-1} $$ is equal to
$$ (-A)^{-1} $$ is always equal to (where A is $$ n^{th} $$ order square matrix )
The sum of the elements of the matrix $$U^{-1} $$ is