Differential Equations
Assume that a spherical rain drop evaporates at a rate proportional to its surface area. If k is a positive constant then differential equation involving the rate of change of the radius of the rain drop is
If $$\displaystyle 2x=y^{\tfrac{1}{5}}+y^{-\tfrac{1}{5}}$$ and $$\displaystyle (x^2-1)\dfrac{d^2y}{dx^2}+\lambda x\dfrac{dy}{dx}+ky=0$$, then $$\lambda +k$$ is equal to:
$$\displaystyle 2x=y^{\frac{1}{5}}+y^{\frac{-1}{5}}$$
$$\displaystyle 2x=y^{\frac{1}{5}}+\frac{1}{y^{\frac{1}{5}}}$$
$$2x=a+\dfrac{1}{a}$$
$$a^2-2xa+1=0$$
$$a=\dfrac{2x\pm\sqrt{4x^2-4}}{2}$$
$$a=\dfrac{2x\pm 2\sqrt{x^2-1}}{2}$$
$$a=x\pm\sqrt{x^2-1}$$
$$y^{\frac{1}{5}} = x\pm \sqrt{x^2-1}$$
$$y=(x\pm \sqrt{x^2-1})^5$$
$$\dfrac{dy}{dx} = 5\left(x\pm \sqrt{x^2-1}\right)^4 \left(1\pm\dfrac{2x}{2\sqrt{2x-1}} \right)$$
$$=5\left(x\pm\sqrt{x^2-1}\right)^4 \left(\dfrac{\sqrt{x^2-1}\pm x}{\sqrt{x^2-1}}\right)$$
$$\dfrac{dy}{dx} = \dfrac{-5(x\pm\sqrt{x^2-1})^5}{\sqrt{x^2-1}}$$
$$\dfrac{dy}{dx} = \dfrac{-5.y}{\sqrt{x^2-1}}$$ .....(1)
$$\dfrac{d^2y}{dx^2} = \dfrac{\sqrt{x^2-1}\left(-5\dfrac{dy}{dx}\right)-\left(-5y\right)\dfrac{1}{2}\dfrac{2x}{\sqrt{x^2-1}}}{(x^2-1)}$$
$$\therefore (x^2-1)\dfrac{d^2y}{dx^2} = -5\sqrt{x^2-1}\dfrac{dy}{dx}+5y\dfrac{x}{\sqrt{x^2-1}}$$
$$=-5(-5y)+5\frac{1}{-5}\dfrac{dy}{dx}\times x$$
$$(x^2-1)\dfrac{d^2y}{dx^2} = 25y -x\dfrac{dy}{dx}$$
$$(x^2-1)\dfrac{d^2y}{dx^2}+1x\dfrac{dy}{dx}-25y=0$$
$$\lambda = 1$$
$$k=-25$$
$$\lambda + k = -24$$
Assume that a spherical rain drop evaporates at a rate proportional to its surface area. If k is a positive constant then differential equation involving the rate of change of the radius of the rain drop is
The differential equation of all parabolas whose axes are parallel to $$\mathrm{y}$$ -axis is:
$$\displaystyle \left ( x^{3}-y^{3} \right )dx+xy^{2}dy= 0.$$ Solving this we get $$\displaystyle \frac{k}{x}=e^{y^{m}/nx^{r}} $$.Find $$m+n+r$$ ?
If $$y=e^{m sin^{-1}x}$$, then show that $$(1-x^2)\dfrac{d^2y}{dx^2}-x\dfrac{dy}{dx}-m^2y=0$$.
Let $$(x,y,z)$$ be points with integer coordinates satisfying the system of homogeneous equations: $$3x-y-z=0$$ $$-3x+z=0$$ $$-3x+2y+z=0$$. Then the number of such points which lie inside a sphere of radius $$10$$ centered at the origin is
The differential equation of the family of circles touching y-axis at the origin is:
The differential equation of all parabolas whose axis is y-axis is:
If $$ y={ \left( \tan ^{ -1 }{ x } \right) }^{ 2 }$$, then $${ \left( { x }^{ 2 }+1 \right) }^{ 2 }\cfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } +2x\left( { x }^{ 2 }+1 \right) \cfrac { dy }{ dx } =$$
if $$y = A{e^{ - kt}}\cos (pt + c)$$ , then prove that $${{{d^2}y} \over {d{t^2}}} + 2k{{dy} \over {dt}} + {n^2}y = 0$$ , where $${n^2} = {p^2} + {k^2}$$
Find the differential equation of all the parabola having axis parallel to the $$x-$$axis.