Differential Equations
Assume that a spherical rain drop evaporates at a rate proportional to its surface area. If k is a positive constant then differential equation involving the rate of change of the radius of the rain drop is
If $$y=e^{m sin^{-1}x}$$, then show that $$(1-x^2)\dfrac{d^2y}{dx^2}-x\dfrac{dy}{dx}-m^2y=0$$.
This problem requires the use of chain rule in evaluating derivatives:
$$y={ e }^{ m\sin ^{ -1 }{ x } }\\ \dfrac { dy }{ dx } ={ e }^{ m\sin ^{ -1 }{ x } }.\dfrac { m }{ \sqrt { 1-{ x }^{ 2 } } } =\dfrac { my }{ \sqrt { 1-{ x }^{ 2 } } } \\ \dfrac { { d }^{ 2 }y }{ { dx }^{ 2 } } =\dfrac { d }{ dx } (\dfrac { dy }{ dx } )=\dfrac { m }{ 1-{ x }^{ 2 } } .(\sqrt { 1-{ x }^{ 2 } } .\dfrac { dy }{ dx } +\dfrac { xy }{ \sqrt { 1-{ x }^{ 2 } } } )\\=\dfrac { m }{ 1-{ x }^{ 2 } } .(\sqrt { 1-{ x }^{ 2 } } .\dfrac { my }{ \sqrt { 1-{ x }^{ 2 } } } +\dfrac { xy }{ \sqrt { 1-{ x }^{ 2 } } } )=\dfrac { m }{ 1-{ x }^{ 2 } } .(my+\dfrac { xy }{ \sqrt { 1-{ x }^{ 2 } } } )\\ \Rightarrow x\dfrac { dy }{ dx } =\dfrac { mxy }{ \sqrt { 1-{ x }^{ 2 } } } ,\quad (1-{ x }^{ 2 })\dfrac { { d }^{ 2 }y }{ { dx }^{ 2 } } =m.(my+\dfrac { xy }{ \sqrt { 1-{ x }^{ 2 } } } )={ m }^{ 2 }y+\dfrac { mxy }{ \sqrt { 1-{ x }^{ 2 } } } \\ \Rightarrow (1-{ x }^{ 2 })\dfrac { { d }^{ 2 }y }{ { dx }^{ 2 } } ={ m }^{ 2 }y+x\dfrac { dy }{ dx } \Rightarrow (1-{ x }^{ 2 })\dfrac { { d }^{ 2 }y }{ { dx }^{ 2 } } -x\dfrac { dy }{ dx } -{ m }^{ 2 }y=0$$
Assume that a spherical rain drop evaporates at a rate proportional to its surface area. If k is a positive constant then differential equation involving the rate of change of the radius of the rain drop is
The differential equation of all parabolas whose axes are parallel to $$\mathrm{y}$$ -axis is:
$$\displaystyle \left ( x^{3}-y^{3} \right )dx+xy^{2}dy= 0.$$ Solving this we get $$\displaystyle \frac{k}{x}=e^{y^{m}/nx^{r}} $$.Find $$m+n+r$$ ?
If $$\displaystyle 2x=y^{\tfrac{1}{5}}+y^{-\tfrac{1}{5}}$$ and $$\displaystyle (x^2-1)\dfrac{d^2y}{dx^2}+\lambda x\dfrac{dy}{dx}+ky=0$$, then $$\lambda +k$$ is equal to:
Let $$(x,y,z)$$ be points with integer coordinates satisfying the system of homogeneous equations: $$3x-y-z=0$$ $$-3x+z=0$$ $$-3x+2y+z=0$$. Then the number of such points which lie inside a sphere of radius $$10$$ centered at the origin is
The differential equation of the family of circles touching y-axis at the origin is:
The differential equation of all parabolas whose axis is y-axis is:
If $$ y={ \left( \tan ^{ -1 }{ x } \right) }^{ 2 }$$, then $${ \left( { x }^{ 2 }+1 \right) }^{ 2 }\cfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } +2x\left( { x }^{ 2 }+1 \right) \cfrac { dy }{ dx } =$$
if $$y = A{e^{ - kt}}\cos (pt + c)$$ , then prove that $${{{d^2}y} \over {d{t^2}}} + 2k{{dy} \over {dt}} + {n^2}y = 0$$ , where $${n^2} = {p^2} + {k^2}$$
Find the differential equation of all the parabola having axis parallel to the $$x-$$axis.