Complex Numbers
For a non-zero complex number z, let arg(z) denotes the principal argument with $$-\pi < arg(z) \leq \pi$$. Then, which of the following statement(s) is (are) FALSE?
If $$z_{1}$$ and $$z_{2}$$ be two complex numbers such that $$|z_{1}+z_{2}|=|z_{1}-z_{2}|$$ then amp $$(z_{1})-amp (z_{2})=?$$
Let $$z_{1}=(x_{1}+iy_{1})$$ nad $$z_{2}=(x_{2}+iy_{2})$$. Then,$$(z_{1}+z_{2})=(x_{1}+x_{2})+i(y_{1}+y_{2})$$ and $$(z_{1}-z_{2})=(x_{1}-x_{2})+i(y_{1}-y_{2})$$Now, $$|z_{1}+z_{2}|=|z_{1}-z_{2}|$$\Rightarrow |z_{1}+z_{2}|^{2}=|z_{1}-z_{2}|^{2}\Rightarrow (x_{1}+x_{2})^{2}+(y_{1}+y_{2})^{2}=(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}$$\Rightarrow (x_{1}+x_{2})^{2}-(x_{1}-x_{2})^{2}+(y_{1}+y_{2})^{2}-(y_{1}-y_{2})^{2}=0$$\Rightarrow 4(x_{1}x_{2}+y_{1}y_{2})=0\Rightarrow (x_{1}x_{2}+y_{1}y_{2})=0$$\therefore amp (z_{1})-amp (z_{2})=\tan^{-1}\dfrac{y_{1}}{x_{1}}-\tan^{-1}\dfrac{y_{2}}{x_{2}}$$=\tan^{-1}\left\{\dfrac{\left(\dfrac{y_{1}}{x_{1}}-\dfrac{y_{2}}{x_{2}}\right)}{1+\left(\dfrac{y_{1}}{x_{1}}-\dfrac{y_{2}}{x_{2}}\right)}\right\}=\tan^{-1}\left\{\dfrac{(x_{2}y_{1}-x_{1}y_{2})}{(x_{1}x_{2}+y_{1}y_{2})}\right\}$$=\tan^{-1}\infty=\dfrac{\pi}{2}$$ $$\left[\because x_{1}x_{2}+y_{1}y_{2}=0\right]$$.
For a non-zero complex number z, let arg(z) denotes the principal argument with $$-\pi < arg(z) \leq \pi$$. Then, which of the following statement(s) is (are) FALSE?
If $$\mid z_1\mid =\mid z_2\mid$$ and arg $$(z_1/z_2)=\pi$$, then $$z_1+z_2$$ is equal to
If $$z_1, z_2, z_3$$ are three complex numbers and $$A=\begin{vmatrix}argz_1 & argz_2 & argz_3\\ argz_2 & argz_3 & argz_1\\ argz_3 & argz_1 & argz_2\end{vmatrix}$$ then A is divisible by
If for complex number $$z_1$$ and $$z_2, arg(z_1)-arg (z_2)=0$$, then $$\mid z_1-z_2\mid$$ is equal to
Consider the complex number $$z_1$$ and $$z_2$$ satisfying the relation $$|z_1+z_2|^2=|z_1|^2+|z_2|^2$$, then one of the possible argument of complex number $$i\dfrac{z_1}{z_2}$$ is,
Consider the complex number $$z_1$$ and $$z_2$$ satisfying the relation $$|z_1+z_2|^2=|z_1|^2+|z_2|^2$$, then the possible difference between the argument of $$z_1$$ and $$z_2$$ is,
If $$arg (z) < 0$$, then $$arg (-z) - arg (z) =$$
If $$x = 9^{1/3} 9^{1/9} 9^{1/27} .... \infty\ \ ,\ y = 4^{1/3} 4^{-1/ 9}4^{1/27} .... \infty$$ and $$z = \displaystyle \sum_{r = 1}^{\infty} (1 + i)^{-r}$$, then $$arg (x + yz)$$ is equal to
If z lies on the circle $$\left| z-2i \right| =2\sqrt { 2 } $$ then the value of arg $$\left( \dfrac { z-2 }{ z+2 } \right) $$ is equal to
For $$\mid z - 1\mid = 1$$, show that $$tan \left (\dfrac{arg(z - 1)}{z} \right ) - \dfrac{2i}{z} = -i$$