Sequences and Series
If $$a_1, a_2, a_3,....a_n$$ are in A.P. and $$a_1+ a_4 + a_7 + ..... + a_{16} = 114$$, then $$a_1 + a_6 + a_{11} + a_{16}$$ is equal to:
Between $$1$$ and $$31$$, $$m$$ numbers have been inserted in such a way that the resulting sequence is an $$A.P$$. and the ratio of $$\displaystyle { 7 }^{ th }$$ and $$(n-1)^{th}$$ numbers is $$5 : 9$$ . Find the value of $$n$$.
Let $$A_{ 1 },{ A }_{ 2 }...{ A }_{ n }$$ be n arithmetic means between $$1$$ and $$31$$
Then $$1,{ A }_{ 2, }{ A }_{ 3, }...{ A }_{ n, }{ 31 }$$ is an A.P with common difference $$\displaystyle d=\frac { 31-1 }{ n+1 } =\frac { 30 }{ n+1 } $$
Now $$\displaystyle { A }_{ 7 }=1+7d=1+\frac { 7\times 30 }{ n+1 } =\frac { n+211 }{ n+1 } $$
And $$\displaystyle { A }_{ n-1 }=1+\left( n-1 \right) d=1+\frac { 30 }{ n+1 } \left( n-1 \right) =\frac { 31n-29 }{ n+1 } $$
It is given that
$$\displaystyle \dfrac { { A }_{ 7 } }{ { A }_{ n-1 } } =\dfrac { 5 }{ 9 } $$
$$\Rightarrow \dfrac { n+211 }{ 31n-29 } =\dfrac { 5 }{ 9 } $$
$$\Rightarrow 9n+1899=155n-145$$
$$ \Rightarrow n=14$$
If $$a_1, a_2, a_3,....a_n$$ are in A.P. and $$a_1+ a_4 + a_7 + ..... + a_{16} = 114$$, then $$a_1 + a_6 + a_{11} + a_{16}$$ is equal to:
If the sum of the first n terms of the series $$\sqrt{3}+\sqrt{75}+\sqrt{243}+\sqrt{507}+....$$ is $$435\sqrt{3}$$, then n equals.
Let $$a_{1},\ a_{2},\ a_{3},\ \ldots,\ a_{100}$$ be an arithmetic progression with $$a_{1}=3$$ and $$S_{p}$$ is sum of 100 terms . For any integer $$n$$ with $$1\leq n \leq 20$$, let $$ m=5n$$. If $$\dfrac{S_{m}}{S_{n}}$$ does not depend on $$n$$, then $$a_{2}$$ is
$$\displaystyle{ a }_{ 1 }=3,{ a }_{ n }={ 3a }_{ n-1 }+2$$ for all $$ n>1$$
Find the sum of odd integers from $$1$$ to $$2001$$.
Find the sum to $$n$$ terms of the $$A.P.$$, whose $$k^{th}$$ term is $$5k+1$$.
If the sum of first $$p$$ terms of an A.P.is equal to the sum of the first $$q$$ terms, then find the sum of the first $$(p+q)$$ terms.
Sum of the first $$p, q$$ and $$r$$ terms of an A.P. are $$a,b$$ and $$c$$ respectively. Prove that $$\displaystyle \frac { a }{ p } (q-r)+\frac { b }{ q } (r-p)+\frac { c }{ r } (p-q)=0$$
$$\displaystyle 1\times 2+2\times 3+3\times 4+4\times 5+...$$
$$\displaystyle 1\times 2\times 3 +2\times 3\times 4+3 \times 4\times 5+...$$