Sequences and Series
If $$a_1, a_2, a_3,....a_n$$ are in A.P. and $$a_1+ a_4 + a_7 + ..... + a_{16} = 114$$, then $$a_1 + a_6 + a_{11} + a_{16}$$ is equal to:
Sum of the first $$p, q$$ and $$r$$ terms of an A.P. are $$a,b$$ and $$c$$ respectively. Prove that $$\displaystyle \frac { a }{ p } (q-r)+\frac { b }{ q } (r-p)+\frac { c }{ r } (p-q)=0$$
Sum of $$n$$ terms of an A.P. is given by
$$S_n =\cfrac{n}{2} [2a+(n-1)d]$$
Let $$\displaystyle {a}_{1}$$ and $$d$$ be the first term and common difference of A.P. respectively.
Given, $$S_p =a$$
$$\Rightarrow \displaystyle \cfrac { p }{ 2 } \left[ { 2a }_{ 1 }+(p-1)d \right] =a$$
$$ \Rightarrow { 2a }_{ 1 }+(p-1)d=\cfrac { 2a }{ p } $$ ...(1)
Also, given $${ S }_{ q }=b$$
$$\Rightarrow \cfrac { q }{ 2 } \left[ { 2a }_{ 1 }+(q-1)d \right] =b$$
$$\Rightarrow { 2a }_{ 1 }+(q-1)d=\cfrac { 2b }{ q }$$ ...(2)
Also given $$S_r=c$$
$$\Rightarrow \displaystyle \frac { r }{ 2 } \left[ { 2a }_{ 1 }+(r-1)d \right] =c$$
$$ \Rightarrow \displaystyle { 2a }_{ 1 }+(r-1)d=\frac { 2c }{ r } $$ ...(3)
Subtracting (2) from (1), we get
$$(p-1)d-(q-1)d\quad =\displaystyle \frac { 2a }{ p } -\frac { 2b }{ q } $$
$$\Rightarrow d(p-1-q+1)=\cfrac { 2aq-2bq }{ pq }$$
$$\Rightarrow d(p-q)=\cfrac { 2aq-2bp }{ pq } $$
$$ \Rightarrow d=\cfrac{ 2(aq-bp) }{ pq(p-q) } $$ ...(4)
Subtracting eq (3) from eq(2), we get
$$ (q-1)d-(r-1)d\quad =\displaystyle \frac { 2b }{ q } -\frac { 2c }{ r } $$
$$ \Rightarrow d(q-1-r+1)=\cfrac { 2b }{ q } -\cfrac { 2c }{ r } $$
$$ \Rightarrow d(q-r)=\cfrac { 2br-2qc }{ qr } $$
$$\Rightarrow d=\cfrac { 2(br-qc) }{ qr(q-r) } $$ ...(5)
Equating both the values of $$d$$ in Eqn (4) and Eqn (5), we get
$$\displaystyle \frac { aq-bp }{ pq(p-q) } =\frac { br-qc }{ qr-(q-r) } $$
$$\Rightarrow qr=(q-r)(aq-bq)=pq(p-q)(br-qc)$$
$$ \Rightarrow r=(aq-bp)(q-r)=p(br-qc)(p-q)$$
$$ \Rightarrow (aqr-bpr)(q-r)=(bpr-pqc)(p-q)$$ Dividing both sides by $$pqr$$,
we get
$$\displaystyle \left( \frac { a }{ p } -\frac { b }{ q } \right) (q-r)=\left( \frac { b }{ q } -\frac { c }{ r } \right) (p-q)$$
$$ \Rightarrow \displaystyle \frac { a }{ p } (q-r)-\frac { b }{ q } (q-r+p-q)+\frac { c }{ r } (p-q)=0$$
$$\Rightarrow \displaystyle \frac { a }{ p } (q-r)+\frac { b }{ q } (r-p)+\frac { c }{ r } (p-q)=0$$ $$[hence \, proved]$$
If $$a_1, a_2, a_3,....a_n$$ are in A.P. and $$a_1+ a_4 + a_7 + ..... + a_{16} = 114$$, then $$a_1 + a_6 + a_{11} + a_{16}$$ is equal to:
If the sum of the first n terms of the series $$\sqrt{3}+\sqrt{75}+\sqrt{243}+\sqrt{507}+....$$ is $$435\sqrt{3}$$, then n equals.
Let $$a_{1},\ a_{2},\ a_{3},\ \ldots,\ a_{100}$$ be an arithmetic progression with $$a_{1}=3$$ and $$S_{p}$$ is sum of 100 terms . For any integer $$n$$ with $$1\leq n \leq 20$$, let $$ m=5n$$. If $$\dfrac{S_{m}}{S_{n}}$$ does not depend on $$n$$, then $$a_{2}$$ is
$$\displaystyle{ a }_{ 1 }=3,{ a }_{ n }={ 3a }_{ n-1 }+2$$ for all $$ n>1$$
Find the sum of odd integers from $$1$$ to $$2001$$.
Find the sum to $$n$$ terms of the $$A.P.$$, whose $$k^{th}$$ term is $$5k+1$$.
If the sum of first $$p$$ terms of an A.P.is equal to the sum of the first $$q$$ terms, then find the sum of the first $$(p+q)$$ terms.
Between $$1$$ and $$31$$, $$m$$ numbers have been inserted in such a way that the resulting sequence is an $$A.P$$. and the ratio of $$\displaystyle { 7 }^{ th }$$ and $$(n-1)^{th}$$ numbers is $$5 : 9$$ . Find the value of $$n$$.
$$\displaystyle 1\times 2+2\times 3+3\times 4+4\times 5+...$$
$$\displaystyle 1\times 2\times 3 +2\times 3\times 4+3 \times 4\times 5+...$$