Sequences and Series
If $$a_1, a_2, a_3,....a_n$$ are in A.P. and $$a_1+ a_4 + a_7 + ..... + a_{16} = 114$$, then $$a_1 + a_6 + a_{11} + a_{16}$$ is equal to:
If the sum of first $$p$$ terms of an A.P.is equal to the sum of the first $$q$$ terms, then find the sum of the first $$(p+q)$$ terms.
Let $$a$$ and $$d$$ be the first term and the common difference of the A.P. respectively.
Thus, $$\displaystyle { S }_{ p }=\frac { p }{ 2 } \left[
2a+(p-1)d \right]$$
and $${ S }_{ q }=\dfrac { q }{ 2 } \left[ 2a+(q-1)d
\right]$$
Now according to the given condition,
$$\dfrac
{ p }{ 2 } \left[ 2a+(p-1)d \right] =\dfrac { q }{ 2 } \left[ 2a+(q-1)d
\right] \quad \\ \Rightarrow p\left[ 2a+(p-1)d \right] =q\left[
2a+(q-1)d \right] \\ \Rightarrow 2ap+pd(p-1)=2aq+qd(q-1)\\ \Rightarrow
2a(p-q)+d\left[ p(p-1)-q(q-1) \right] =0\\ \Rightarrow 2a(p-q)+d\left[ {
p }^{ 2 }-p-{ q }^{ 2 }+q \right] =0\\ \Rightarrow 2a(p-q)+d\left[ {
(p-q)(p+q)-(p-q) } \right] =0\\ \Rightarrow 2a(p-q)+d\left[ {
(p-q)(p+q-1) } \right] =0\\ \Rightarrow 2a+d(p+q-1)=0\\ \Rightarrow
d=\dfrac { -2a }{ p+q-1 } \\ \therefore { S }_{ p+q }=\dfrac { p+q }{ 2 }
\left[ 2a+(p+q-1).d \right] \\ \quad =\dfrac { p+q }{ 2
} \left[ 2a+(p+q-1)\left( \dfrac { -2a }{ p+q-1 } \right) \right]=0$$
If $$a_1, a_2, a_3,....a_n$$ are in A.P. and $$a_1+ a_4 + a_7 + ..... + a_{16} = 114$$, then $$a_1 + a_6 + a_{11} + a_{16}$$ is equal to:
If the sum of the first n terms of the series $$\sqrt{3}+\sqrt{75}+\sqrt{243}+\sqrt{507}+....$$ is $$435\sqrt{3}$$, then n equals.
Let $$a_{1},\ a_{2},\ a_{3},\ \ldots,\ a_{100}$$ be an arithmetic progression with $$a_{1}=3$$ and $$S_{p}$$ is sum of 100 terms . For any integer $$n$$ with $$1\leq n \leq 20$$, let $$ m=5n$$. If $$\dfrac{S_{m}}{S_{n}}$$ does not depend on $$n$$, then $$a_{2}$$ is
$$\displaystyle{ a }_{ 1 }=3,{ a }_{ n }={ 3a }_{ n-1 }+2$$ for all $$ n>1$$
Find the sum of odd integers from $$1$$ to $$2001$$.
Find the sum to $$n$$ terms of the $$A.P.$$, whose $$k^{th}$$ term is $$5k+1$$.
Sum of the first $$p, q$$ and $$r$$ terms of an A.P. are $$a,b$$ and $$c$$ respectively. Prove that $$\displaystyle \frac { a }{ p } (q-r)+\frac { b }{ q } (r-p)+\frac { c }{ r } (p-q)=0$$
Between $$1$$ and $$31$$, $$m$$ numbers have been inserted in such a way that the resulting sequence is an $$A.P$$. and the ratio of $$\displaystyle { 7 }^{ th }$$ and $$(n-1)^{th}$$ numbers is $$5 : 9$$ . Find the value of $$n$$.
$$\displaystyle 1\times 2+2\times 3+3\times 4+4\times 5+...$$
$$\displaystyle 1\times 2\times 3 +2\times 3\times 4+3 \times 4\times 5+...$$