Sequences and Series
If $$a_1, a_2, a_3,....a_n$$ are in A.P. and $$a_1+ a_4 + a_7 + ..... + a_{16} = 114$$, then $$a_1 + a_6 + a_{11} + a_{16}$$ is equal to:
Find the sum of odd integers from $$1$$ to $$2001$$.
The odd integers from$$1$$ to $$2001$$ are $$1, 3, 5, ...1999, 2001$$.
This sequence form an A.P.
Here, first term is, $$a= 1$$ and common difference, $$d=2$$
Here $$
a+(n-1)d=2001 $$
$$\Rightarrow 1+(n-1)(2)=2001$$
$$\Rightarrow 2n-2=2000$$
$$\Rightarrow n=1001$$
Hence required sum is,
$$\displaystyle { S }_{ n }=\frac { n }{ 2 } \left[ 2a+(n-1)d
\right] $$
$$=\dfrac { 1001 }{ 2 } \left[ 2\times 1+(1001-1)\times 2 \right]$$
$$\displaystyle = \dfrac { 1001 }{ 2 } \left[ 2+1000\times 2 \right] $$
$$= \dfrac { 1001 }{ 2 } \times 2002 $$
$$= 1001\times 1001 $$
$$=1002001$$
If $$a_1, a_2, a_3,....a_n$$ are in A.P. and $$a_1+ a_4 + a_7 + ..... + a_{16} = 114$$, then $$a_1 + a_6 + a_{11} + a_{16}$$ is equal to:
If the sum of the first n terms of the series $$\sqrt{3}+\sqrt{75}+\sqrt{243}+\sqrt{507}+....$$ is $$435\sqrt{3}$$, then n equals.
Let $$a_{1},\ a_{2},\ a_{3},\ \ldots,\ a_{100}$$ be an arithmetic progression with $$a_{1}=3$$ and $$S_{p}$$ is sum of 100 terms . For any integer $$n$$ with $$1\leq n \leq 20$$, let $$ m=5n$$. If $$\dfrac{S_{m}}{S_{n}}$$ does not depend on $$n$$, then $$a_{2}$$ is
$$\displaystyle{ a }_{ 1 }=3,{ a }_{ n }={ 3a }_{ n-1 }+2$$ for all $$ n>1$$
Find the sum to $$n$$ terms of the $$A.P.$$, whose $$k^{th}$$ term is $$5k+1$$.
If the sum of first $$p$$ terms of an A.P.is equal to the sum of the first $$q$$ terms, then find the sum of the first $$(p+q)$$ terms.
Sum of the first $$p, q$$ and $$r$$ terms of an A.P. are $$a,b$$ and $$c$$ respectively. Prove that $$\displaystyle \frac { a }{ p } (q-r)+\frac { b }{ q } (r-p)+\frac { c }{ r } (p-q)=0$$
Between $$1$$ and $$31$$, $$m$$ numbers have been inserted in such a way that the resulting sequence is an $$A.P$$. and the ratio of $$\displaystyle { 7 }^{ th }$$ and $$(n-1)^{th}$$ numbers is $$5 : 9$$ . Find the value of $$n$$.
$$\displaystyle 1\times 2+2\times 3+3\times 4+4\times 5+...$$
$$\displaystyle 1\times 2\times 3 +2\times 3\times 4+3 \times 4\times 5+...$$