Single Choice

If $$A = \begin{bmatrix} 5a & -b\\ 3 & 2\end{bmatrix}$$ and $$A \ adj\ A = A A^{T}$$, then $$5a + b$$ is equal to

A$$-1$$
B$$5$$
Correct Answer
C$$4$$
D$$13$$

Solution

$$A. A^T = A. adjA$$ ..... $$(i)$$

$$A. adj A = |A|(I)$$ ........ $$(ii)$$ $$\left[A^{-1}=\frac{1}{|A|} adj(A)\right]$$

Now, $$det(A) = 10a+3b$$

$$A . A^T= \begin{bmatrix} 5a & -b\\ 3 & 2\end{bmatrix}$$ \begin{bmatrix} 5a & 3\\ -b & 2\end{bmatrix}$$

$$= \begin{bmatrix} 25a^2+b^2 & 15a-2b\\ 15a-2b & 13\end{bmatrix}$$

$$det(A) |I|= \begin{bmatrix} 10a+3b & 0\\ 0 & 10a+3b\end{bmatrix}$$

From $$(i)$$ and $$(ii)$$

$$det (A) |I| = A.A^T$$

$$\implies \begin{bmatrix}10a+3b & 0 \\ 0 & 10a+3b \end{bmatrix}=\begin{bmatrix} 25a^2+b^2 & 15a-2b\\ 15a-2b & 13\end{bmatrix}$$

$$\implies 10a+3b=13=25a^2+b^2$$

And $$15a-2b=0$$

$$\implies 15a=2b\implies b=\dfrac{15a}{2}$$

Now, $$10a+3b=13$$

$$\implies 20a+45a=26$$ .... [By substituting the value of $$b$$]

$$\implies a=\dfrac {26}{65}$$

Now, $$b=\dfrac {15a}{2} = \dfrac {15 \times 26}{2 \times 65}=3$$

Thus, $$5a+b = 5 \left(\dfrac {26}{65}\right)+3=5$$


SIMILAR QUESTIONS

Determinants

If the matrices $$A=\begin{bmatrix} 1 & 1 & 2\\ 1 & 3 & 4\\ 1 & -1 & 3\end{bmatrix}$$, $$B=adj A$$ and $$C=3A$$, then $$\dfrac{|adj B|}{|C|}$$ is equal to?

Determinants

If A is a $$3\times 3$$ matrix such that $$|5. adjA| = 5,$$ then $$|A|$$ is equal to

Determinants

Let $$A$$ be a matrix such that $$A \cdot \begin{bmatrix} 1& 2\\ 0 & 3\end{bmatrix}$$ is a scalar matrix and $$|3A| = 108$$. Then $$A^{2}$$ equals :

Determinants

Let A be any $$3\times 3$$ invertible matrix. Then which one of the following is not always true?

Determinants

Let $$\displaystyle P=\left[ \begin{matrix} 3 \\ 2 \\ 3 \end{matrix}\begin{matrix} -1 \\ 0 \\ -5 \end{matrix}\begin{matrix} -2 \\ \alpha \\ 0 \end{matrix} \right] $$, where $$\alpha \in R$$. Suppose $$\displaystyle Q=\left[ { q }_{ ij } \right] $$ is matrix such that $$PQ=kI$$, where $$k\in R,\,k\neq 0$$ and $$I$$ is the identity matrix of order $$3$$. If $$\displaystyle { q }_{ 23 }=-\frac { k }{ 8 } $$ and $$\displaystyle det\left( Q \right) =\frac { { k }^{ 2 } }{ 2 } $$, then

Determinants

Using the properties of determinants, show that: $$\begin{vmatrix} 1+{ a }^{ 2 }-{ b }^{ 2 } & 2ab & -2b \\ 2ab & 1-{ a }^{ 2 }+{ b }^{ 2 } & 2a \\ 2b & -2a & 1-{ a }^{ 2 }-{ b }^{ 2 } \end{vmatrix}=(1+{ a }^{ 2 }+{ b }^{ 2 })^{ 3 }$$

Determinants

Verify $$A (adj A) = (adj A) A = |A| I$$ $$A=\begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$$

Determinants

Verify $$A (adj A) = (adj A) A = |A| I$$ $$A=\begin{bmatrix} 1 & 1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 3 \end{bmatrix}$$

Determinants

Let $$A$$ be a nonsingular square matrix of order $$3\times 3$$. Then $$| adj A|$$ is equal to

Determinants

Let $$A=$$ $$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$$. Verify that (i)$${ [adj\quad A }]^{ -1 }=adj\quad { (A) }^{ -1 }$$ (ii)$${ (A }^{ -1 })^{ -1 }=A$$

Contact Details