Subjective Type

Verify $$A (adj A) = (adj A) A = |A| I$$ $$A=\begin{bmatrix} 1 & 1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 3 \end{bmatrix}$$

Solution

Let $$A=\begin{bmatrix} 1 & 1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 3 \end{bmatrix}$$

Here, $$|A|=-1(9-2)=-7$$ (expanding along the second column)

$$|A|I=-7I$$ .....(1)

We know that, $$adj A =C^{T}$$

So, we will find out co-factors of each element of A.
$$C_{ 11 }=(-1)^{ 1+1 }\begin{vmatrix} 0 & 2 \\ 0 & 3 \end{vmatrix}$$
$$\Rightarrow C_{11}=0$$

$$C_{ 12 }=(-1)^{ 1+2 }\begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix}$$
$$\Rightarrow C_{12}=-(9-2)=-7$$

$$C_{ 13 }=(-1)^{ 1+3 }\begin{vmatrix} 3 & 0 \\ 1 & 0 \end{vmatrix}$$
$$\Rightarrow C_{13}=0$$

$$C_{ 21 }=(-1)^{ 2+1 }\begin{vmatrix} 1 & 2 \\ 0 & 3 \end{vmatrix}$$
$$\Rightarrow C_{21}=-(3-0)=-3$$

$$C_{ 22 }=(-1)^{ 2+2 }\begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix}$$
$$\Rightarrow C_{22}=3-2=1$$

$$C_{ 23 }=(-1)^{ 2+3 }\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$$
$$\Rightarrow C_{23}=-(0-1)=1$$

$$C_{ 31 }=(-1)^{ 3+1 }\begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix}$$
$$\Rightarrow C_{31}=2-0=2$$

$$C_{ 32 }=(-1)^{ 3+2 }\begin{vmatrix} 1 & 2 \\ 3 & 2 \end{vmatrix}$$
$$\Rightarrow C_{32}=-(2-6)=4$$

$$C_{ 33 }=(-1)^{ 3+3 }\begin{vmatrix} 1 & 1 \\ 3 & 0 \end{vmatrix}$$
$$\Rightarrow C_{33}=0-3=-3$$

So, the cofactor matrix $$C=\begin{bmatrix} 0 & -7 & 0 \\ -3 & 1 & 1 \\ 2 & 4 & -3 \end{bmatrix}$$

$$\Rightarrow adj A= { C }^{ T }=\begin{bmatrix} 0 & -3 & 2 \\ -7 & 1 & 4 \\ 0 & 1 & -3 \end{bmatrix}$$

Consider $$ (adj A)A=\begin{bmatrix} 0 & -3 & 2 \\ -7 & 1 & 4 \\ 0 & 1 & -3 \end{bmatrix}\begin{bmatrix} 1 & 1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 3 \end{bmatrix}$$

$$=\begin{bmatrix} 0-9+2 & 0+0+0 & 0-6+6 \\ -7+3+4 & -7+0+0 & -14+2+12 \\ 0+3-3 & 0+0+0 & 0+2-9 \end{bmatrix}$$

$$=\begin{bmatrix} -7 & 0 & 0 \\ 0 & -7 & 0 \\ 0 & 0 & -7 \end{bmatrix}$$

$$=-7\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\Rightarrow (adj A)A=-7I$$ .....(2)

Now, $$ A(adjA)=\begin{bmatrix} 1 & 1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 3 \end{bmatrix}\begin{bmatrix} 0 & -3 & 2 \\ -7 & 1 & 4 \\ 0 & 1 & -3 \end{bmatrix}$$

$$=\begin{bmatrix} 0-7+0 & -3+1+2 & 2+4-6 \\ 0+0+0 & -9+0+2 & 6+0-6 \\ 0+0+0 & -3+0+3 & 2+0-9 \end{bmatrix}$$

$$=\begin{bmatrix} -7 & 0 & 0 \\ 0 & -7 & 0 \\ 0 & 0 & -7 \end{bmatrix}$$

$$=-7\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\Rightarrow A(adj A)=-7I$$ ....(3)

From (1), (2) and (3), we get
$$A(adj A)=(adj A)A=|A|I$$


SIMILAR QUESTIONS

Determinants

If the matrices $$A=\begin{bmatrix} 1 & 1 & 2\\ 1 & 3 & 4\\ 1 & -1 & 3\end{bmatrix}$$, $$B=adj A$$ and $$C=3A$$, then $$\dfrac{|adj B|}{|C|}$$ is equal to?

Determinants

If A is a $$3\times 3$$ matrix such that $$|5. adjA| = 5,$$ then $$|A|$$ is equal to

Determinants

Let $$A$$ be a matrix such that $$A \cdot \begin{bmatrix} 1& 2\\ 0 & 3\end{bmatrix}$$ is a scalar matrix and $$|3A| = 108$$. Then $$A^{2}$$ equals :

Determinants

Let A be any $$3\times 3$$ invertible matrix. Then which one of the following is not always true?

Determinants

If $$A = \begin{bmatrix} 5a & -b\\ 3 & 2\end{bmatrix}$$ and $$A \ adj\ A = A A^{T}$$, then $$5a + b$$ is equal to

Determinants

Let $$\displaystyle P=\left[ \begin{matrix} 3 \\ 2 \\ 3 \end{matrix}\begin{matrix} -1 \\ 0 \\ -5 \end{matrix}\begin{matrix} -2 \\ \alpha \\ 0 \end{matrix} \right] $$, where $$\alpha \in R$$. Suppose $$\displaystyle Q=\left[ { q }_{ ij } \right] $$ is matrix such that $$PQ=kI$$, where $$k\in R,\,k\neq 0$$ and $$I$$ is the identity matrix of order $$3$$. If $$\displaystyle { q }_{ 23 }=-\frac { k }{ 8 } $$ and $$\displaystyle det\left( Q \right) =\frac { { k }^{ 2 } }{ 2 } $$, then

Determinants

Using the properties of determinants, show that: $$\begin{vmatrix} 1+{ a }^{ 2 }-{ b }^{ 2 } & 2ab & -2b \\ 2ab & 1-{ a }^{ 2 }+{ b }^{ 2 } & 2a \\ 2b & -2a & 1-{ a }^{ 2 }-{ b }^{ 2 } \end{vmatrix}=(1+{ a }^{ 2 }+{ b }^{ 2 })^{ 3 }$$

Determinants

Verify $$A (adj A) = (adj A) A = |A| I$$ $$A=\begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$$

Determinants

Let $$A$$ be a nonsingular square matrix of order $$3\times 3$$. Then $$| adj A|$$ is equal to

Determinants

Let $$A=$$ $$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$$. Verify that (i)$${ [adj\quad A }]^{ -1 }=adj\quad { (A) }^{ -1 }$$ (ii)$${ (A }^{ -1 })^{ -1 }=A$$

Contact Details