Single Choice

Let A be any $$3\times 3$$ invertible matrix. Then which one of the following is not always true?

A$$adj (adj (A))=|A|\cdot (adj(A))^{-1}$$
Correct Answer
B$$adj(adj(A))=|A|^2\cdot(adj(A))^{-1}$$
C$$adj(adj(A))=|A|\cdot A$$
D$$adj(A)=|A|\cdot A^{-1}$$

Solution

we know that A.adjA=|A|I2

adj(adj(A))=|A|n−2A=|A|3−2A=|A|.A so 3rd is correct

using adjA=|A|A−1.....4th is true

adj(adjA)=|adjA|(adjA)−1

=|A|2(adjA)−1

so 2nd is true

we can say 1 st is wrong option


SIMILAR QUESTIONS

Determinants

If the matrices $$A=\begin{bmatrix} 1 & 1 & 2\\ 1 & 3 & 4\\ 1 & -1 & 3\end{bmatrix}$$, $$B=adj A$$ and $$C=3A$$, then $$\dfrac{|adj B|}{|C|}$$ is equal to?

Determinants

If A is a $$3\times 3$$ matrix such that $$|5. adjA| = 5,$$ then $$|A|$$ is equal to

Determinants

Let $$A$$ be a matrix such that $$A \cdot \begin{bmatrix} 1& 2\\ 0 & 3\end{bmatrix}$$ is a scalar matrix and $$|3A| = 108$$. Then $$A^{2}$$ equals :

Determinants

If $$A = \begin{bmatrix} 5a & -b\\ 3 & 2\end{bmatrix}$$ and $$A \ adj\ A = A A^{T}$$, then $$5a + b$$ is equal to

Determinants

Let $$\displaystyle P=\left[ \begin{matrix} 3 \\ 2 \\ 3 \end{matrix}\begin{matrix} -1 \\ 0 \\ -5 \end{matrix}\begin{matrix} -2 \\ \alpha \\ 0 \end{matrix} \right] $$, where $$\alpha \in R$$. Suppose $$\displaystyle Q=\left[ { q }_{ ij } \right] $$ is matrix such that $$PQ=kI$$, where $$k\in R,\,k\neq 0$$ and $$I$$ is the identity matrix of order $$3$$. If $$\displaystyle { q }_{ 23 }=-\frac { k }{ 8 } $$ and $$\displaystyle det\left( Q \right) =\frac { { k }^{ 2 } }{ 2 } $$, then

Determinants

Using the properties of determinants, show that: $$\begin{vmatrix} 1+{ a }^{ 2 }-{ b }^{ 2 } & 2ab & -2b \\ 2ab & 1-{ a }^{ 2 }+{ b }^{ 2 } & 2a \\ 2b & -2a & 1-{ a }^{ 2 }-{ b }^{ 2 } \end{vmatrix}=(1+{ a }^{ 2 }+{ b }^{ 2 })^{ 3 }$$

Determinants

Verify $$A (adj A) = (adj A) A = |A| I$$ $$A=\begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$$

Determinants

Verify $$A (adj A) = (adj A) A = |A| I$$ $$A=\begin{bmatrix} 1 & 1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 3 \end{bmatrix}$$

Determinants

Let $$A$$ be a nonsingular square matrix of order $$3\times 3$$. Then $$| adj A|$$ is equal to

Determinants

Let $$A=$$ $$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$$. Verify that (i)$${ [adj\quad A }]^{ -1 }=adj\quad { (A) }^{ -1 }$$ (ii)$${ (A }^{ -1 })^{ -1 }=A$$

Contact Details