Multiple Choice

Let $$\displaystyle P=\left[ \begin{matrix} 3 \\ 2 \\ 3 \end{matrix}\begin{matrix} -1 \\ 0 \\ -5 \end{matrix}\begin{matrix} -2 \\ \alpha \\ 0 \end{matrix} \right] $$, where $$\alpha \in R$$. Suppose $$\displaystyle Q=\left[ { q }_{ ij } \right] $$ is matrix such that $$PQ=kI$$, where $$k\in R,\,k\neq 0$$ and $$I$$ is the identity matrix of order $$3$$. If $$\displaystyle { q }_{ 23 }=-\frac { k }{ 8 } $$ and $$\displaystyle det\left( Q \right) =\frac { { k }^{ 2 } }{ 2 } $$, then

A$$\alpha=0, k=8$$
B$$4\alpha-k+8=0$$
Correct Answer
C$$ det( P\,adj( Q)) ={ 2 }^{ 9 }$$
Correct Answer
D$$det( Q\,adj( P) ) ={ 2 }^{ 13 }$$

Solution

As $$PQ = kI \Rightarrow Q=kP^{-1}I$$

$$\displaystyle |P|=\left[ \begin{matrix} 3 \\ 2 \\ 3 \end{matrix}\begin{matrix} -1 \\ 0 \\ -5 \end{matrix}\begin{matrix} -2 \\ \alpha \\ 0 \end{matrix} \right] $$,

$$=(20+12\alpha)$$ .......$$(1)$$

Now $$Q=\dfrac{k}{|P|}(adjP)I$$ $$\Rightarrow Q=\dfrac{k}{(20+12\alpha)}\begin{bmatrix} 5\alpha&10&-\alpha \\3\alpha&0&(-3\alpha -4)\\-10&-12&0 \end{bmatrix} \begin{bmatrix} 1&0&0 \\0&1&0\\0&0&1 \end{bmatrix}$$

$$\because q_{23}=\dfrac{-k}{8}\Rightarrow \dfrac{-k(3\alpha+4)}{(20+12\alpha)}=\dfrac{-k}{8}\Rightarrow 2(3\alpha+4)=5+3\alpha$$

$$3\alpha=-3 \Rightarrow \alpha =-1$$

Also $$|Q| = \dfrac{k^3|I|}{|P|} \Rightarrow \dfrac{k^2}{2} =\dfrac{k^3}{(20+12\alpha)}$$ $$\because from(1)$$

$$(20+12\alpha)=2k \Rightarrow 8=2k\Rightarrow k=4$$

(A) incorrect

(B) correct
putting $$\alpha=-1$$ and $$k=4$$ satisfy the equation $$4\alpha-k+8$$

(C) $$|P(adjQ)| = |P| |adjQ| = P| |Q|^2 = 2^3(2^3)^2 = 2^9$$ correct

(D) $$|Q(adjP)| = |Q| |adjP| = |Q| |P|^2 = 2^3(2^3)^2 = 2^9$$ incorrect


SIMILAR QUESTIONS

Determinants

If the matrices $$A=\begin{bmatrix} 1 & 1 & 2\\ 1 & 3 & 4\\ 1 & -1 & 3\end{bmatrix}$$, $$B=adj A$$ and $$C=3A$$, then $$\dfrac{|adj B|}{|C|}$$ is equal to?

Determinants

If A is a $$3\times 3$$ matrix such that $$|5. adjA| = 5,$$ then $$|A|$$ is equal to

Determinants

Let $$A$$ be a matrix such that $$A \cdot \begin{bmatrix} 1& 2\\ 0 & 3\end{bmatrix}$$ is a scalar matrix and $$|3A| = 108$$. Then $$A^{2}$$ equals :

Determinants

Let A be any $$3\times 3$$ invertible matrix. Then which one of the following is not always true?

Determinants

If $$A = \begin{bmatrix} 5a & -b\\ 3 & 2\end{bmatrix}$$ and $$A \ adj\ A = A A^{T}$$, then $$5a + b$$ is equal to

Determinants

Using the properties of determinants, show that: $$\begin{vmatrix} 1+{ a }^{ 2 }-{ b }^{ 2 } & 2ab & -2b \\ 2ab & 1-{ a }^{ 2 }+{ b }^{ 2 } & 2a \\ 2b & -2a & 1-{ a }^{ 2 }-{ b }^{ 2 } \end{vmatrix}=(1+{ a }^{ 2 }+{ b }^{ 2 })^{ 3 }$$

Determinants

Verify $$A (adj A) = (adj A) A = |A| I$$ $$A=\begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$$

Determinants

Verify $$A (adj A) = (adj A) A = |A| I$$ $$A=\begin{bmatrix} 1 & 1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 3 \end{bmatrix}$$

Determinants

Let $$A$$ be a nonsingular square matrix of order $$3\times 3$$. Then $$| adj A|$$ is equal to

Determinants

Let $$A=$$ $$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$$. Verify that (i)$${ [adj\quad A }]^{ -1 }=adj\quad { (A) }^{ -1 }$$ (ii)$${ (A }^{ -1 })^{ -1 }=A$$

Contact Details