Single Choice

Range of $$\tan^{-1}x$$ is

A$$\left(0, \dfrac {\pi}{2}\right)$$
B$$\left(\dfrac {-\pi}{2}, \dfrac {\pi}{2}\right)$$
Correct Answer
C$$\left[\dfrac {-\pi}{2}, \dfrac {\pi}{2}\right]$$
D$$none\ of\ these$$

Solution


SIMILAR QUESTIONS

Inverse Trigonometric Functions

Find the range of $$\displaystyle { \sin }^{ -1 }x$$.

Inverse Trigonometric Functions

Range of $$\cos^{-1}x$$ is

Inverse Trigonometric Functions

Range of $$\sec^{-1}x$$ is

Inverse Trigonometric Functions

Range of $$cosec ^{-1}x$$ is

Inverse Trigonometric Functions

Domain of $$\cos^{-1}x$$ is

Inverse Trigonometric Functions

Domain of $$\sec^{-1}x$$ is

Inverse Trigonometric Functions

The value of $$\displaystyle k \left ( k > 0 \right )$$ such that the length of the longest interval in which the function $$\displaystyle f \left ( x \right ) = \sin^{-1} \left | \sin kx \right | + \cos^{-1} \left ( \cos kx \right )$$ is constant is $$\displaystyle \pi / 4$$ is/are

Inverse Trigonometric Functions

The value of $$x$$ which satisfies equation $$\displaystyle 2\:\tan^{-1}2x=\sin^{-1}\frac{4x}{1+4x^{2}}$$ is valid in the interval

Inverse Trigonometric Functions

If $$\displaystyle 2tan^{-1} x + sin^{-1} \left( \frac{2x}{1+x^2} \right)$$ is independent of 'x' then.

Inverse Trigonometric Functions

The value of $$\cos\Bigg(\dfrac{1}{2}cos^{-1}\dfrac{1}{8}\Bigg)$$ is

Contact Details