Inverse Trigonometric Functions
Find the range of $$\displaystyle { \sin }^{ -1 }x$$.
The value of $$\displaystyle k \left ( k > 0 \right )$$ such that the length of the longest interval in which the function $$\displaystyle f \left ( x \right ) = \sin^{-1} \left | \sin kx \right | + \cos^{-1} \left ( \cos kx \right )$$ is constant is $$\displaystyle \pi / 4$$ is/are
$${ \sin }^{ -1 }\left| \sin kx \right| =kx\quad kx\epsilon \left[ 0,2\pi \right] $$ ...(1)
$${ cos }^{ -1 }\left( cos x \right) =kx\quad kx\epsilon \left[ 0,\pi \right] $$ ...(2)
From (1) and (2)
$${ \sin }^{ -1 }\left| \sin kx \right| +{ \cos }^{ -1 }\left( \cos x \right) $$ is constant
when $$kx\epsilon \left[ 0,\pi \right] $$
For for interval of $$\cfrac { \pi }{ 4 } $$
$$x=\left[ 0,\cfrac { \pi }{ 4 } \right] \Rightarrow k=4$$
Find the range of $$\displaystyle { \sin }^{ -1 }x$$.
Range of $$\cos^{-1}x$$ is
Range of $$\tan^{-1}x$$ is
Range of $$\sec^{-1}x$$ is
Range of $$cosec ^{-1}x$$ is
Domain of $$\cos^{-1}x$$ is
Domain of $$\sec^{-1}x$$ is
The value of $$x$$ which satisfies equation $$\displaystyle 2\:\tan^{-1}2x=\sin^{-1}\frac{4x}{1+4x^{2}}$$ is valid in the interval
If $$\displaystyle 2tan^{-1} x + sin^{-1} \left( \frac{2x}{1+x^2} \right)$$ is independent of 'x' then.
The value of $$\cos\Bigg(\dfrac{1}{2}cos^{-1}\dfrac{1}{8}\Bigg)$$ is