Inverse Trigonometric Functions
Find the range of $$\displaystyle { \sin }^{ -1 }x$$.
The value of $$x$$ which satisfies equation $$\displaystyle 2\:\tan^{-1}2x=\sin^{-1}\frac{4x}{1+4x^{2}}$$ is valid in the interval
Given:
$$2tan^{-1}{2x=sin^-{1}\dfrac{4x}{1+4x^2}}$$
$$2x=tan \theta $$
$$x= \dfrac{tan \theta}{2} $$
$$2tan^{-1} (tan \theta)=sin^{-1}\dfrac{2tan \theta}{1+tan^{2} \theta}$$
$$2tan^{-1} (tan \theta)=sin^{-1}(sin2 \theta)$$
$$ \dfrac{-\pi}{2} \leq 2 \theta \leq \dfrac{\pi}{2} $$
$$ \dfrac{-\pi}{4} \leq \theta \leq \dfrac{\pi}{4} $$
$$-1 \leq tan \theta \leq +1$$
$$\dfrac{-1}{2} \leq \dfrac{tan \theta}{2} \leq \dfrac{+1}{2}$$
$$\dfrac{-1}{2} \leq x \leq \dfrac{+1}{2}$$
Find the range of $$\displaystyle { \sin }^{ -1 }x$$.
Range of $$\cos^{-1}x$$ is
Range of $$\tan^{-1}x$$ is
Range of $$\sec^{-1}x$$ is
Range of $$cosec ^{-1}x$$ is
Domain of $$\cos^{-1}x$$ is
Domain of $$\sec^{-1}x$$ is
The value of $$\displaystyle k \left ( k > 0 \right )$$ such that the length of the longest interval in which the function $$\displaystyle f \left ( x \right ) = \sin^{-1} \left | \sin kx \right | + \cos^{-1} \left ( \cos kx \right )$$ is constant is $$\displaystyle \pi / 4$$ is/are
If $$\displaystyle 2tan^{-1} x + sin^{-1} \left( \frac{2x}{1+x^2} \right)$$ is independent of 'x' then.
The value of $$\cos\Bigg(\dfrac{1}{2}cos^{-1}\dfrac{1}{8}\Bigg)$$ is