Single Choice

The value of $$\cos\Bigg(\dfrac{1}{2}cos^{-1}\dfrac{1}{8}\Bigg)$$ is

A$$\dfrac{3}{4}$$
Correct Answer
B$$\dfrac{-3}{4}$$
C$$\dfrac{1}{16}$$
D$$\dfrac{1}{4}$$

Solution

Let $$cos^{-1}\dfrac{1}{8}=\theta,where\,0<\theta<\pi,\,then\,\dfrac{1}{2}cos^{-1}\dfrac{1}{8}=\dfrac{1}{2}\theta$$

$$\cos\Bigg(\dfrac{1}{2}cos^{-1}\dfrac{1}{8}\Bigg)=\cos\dfrac{\theta}{2}$$

Now $$cos^{-1}\dfrac{1}{8}=\theta\,\,\implies\cos\theta=\dfrac{1}{8}\implies\cos^{2}\dfrac{\theta}{2}=\dfrac{9}{16}\implies\cos\dfrac{\theta}{2}=\dfrac{3}{4}$$


SIMILAR QUESTIONS

Inverse Trigonometric Functions

Find the range of $$\displaystyle { \sin }^{ -1 }x$$.

Inverse Trigonometric Functions

Range of $$\cos^{-1}x$$ is

Inverse Trigonometric Functions

Range of $$\tan^{-1}x$$ is

Inverse Trigonometric Functions

Range of $$\sec^{-1}x$$ is

Inverse Trigonometric Functions

Range of $$cosec ^{-1}x$$ is

Inverse Trigonometric Functions

Domain of $$\cos^{-1}x$$ is

Inverse Trigonometric Functions

Domain of $$\sec^{-1}x$$ is

Inverse Trigonometric Functions

The value of $$\displaystyle k \left ( k > 0 \right )$$ such that the length of the longest interval in which the function $$\displaystyle f \left ( x \right ) = \sin^{-1} \left | \sin kx \right | + \cos^{-1} \left ( \cos kx \right )$$ is constant is $$\displaystyle \pi / 4$$ is/are

Inverse Trigonometric Functions

The value of $$x$$ which satisfies equation $$\displaystyle 2\:\tan^{-1}2x=\sin^{-1}\frac{4x}{1+4x^{2}}$$ is valid in the interval

Inverse Trigonometric Functions

If $$\displaystyle 2tan^{-1} x + sin^{-1} \left( \frac{2x}{1+x^2} \right)$$ is independent of 'x' then.

Contact Details