3D Geometry
The angle made by line $$r[cos \theta - \sqrt{3} sin \theta ]=5$$ with initial line is
Find the angle between the following pair of lines: (i) $$\vec { r } =2\hat { i } -5\hat { j } +\hat { k } +\lambda \left( 3\hat { i } -2\hat { j } +6\hat { k } \right) $$ and $$\vec { r } =7\hat { i } -6\hat { k } +\mu \left( \hat { i } +2\hat { j } +2\hat { k } \right) $$ (ii) $$\vec { r } =3\hat { i } +\hat { j } -2\hat { k } +\lambda \left( \hat { i } -\hat { j } -2\hat { k } \right) $$ and $$\vec { r } =2\hat { i } -\hat { j } -56\hat { k } +\mu \left( \hat { 3i } -5\hat { j } -4\hat { k } \right) $$
(i)
If $$\theta$$ be the angle between the given lines.
Then $$\cos { \theta } =\left| \cfrac { \vec { {
b }_{ 1 } } .\vec { { b }_{ 2 } } }{ \left| \vec { { b }_{ 1 } }
\right| \left| \vec { { b }_{ 2 } } \right| } \right| $$
where $$ \vec { { b }_{ 1 } } =\left(
3\hat { i } +2\hat { j } +6\hat { k } \right) $$ and $$\vec { { b }_{ 2
} } =\left( \hat { i } +2\hat { j } +2\hat { k } \right) $$
$$\therefore$$ $$\left| \vec { { b }_{ 1 } } \right| =\sqrt { { 3 }^{ 2 }+{ 2 }^{ 2 }+{ 6 }^{ 2 } } =7$$
$$\left| \vec { { b }_{ 2 } } \right| =\sqrt { { 1 }^{ 2 }+{ 2 }^{ 2 }+{ 2 }^{ 2 } } =3$$
$$\vec
{ { b }_{ 1 } } .\vec { { b }_{ 2 } } =\left( 3\hat { i } +2\hat { j }
+6\hat { k } \right) .\left( \hat { i } +2\hat { j } +2\hat { k }
\right) $$
$$=3\times 1+2\times 2+6\times 2=3+4+12=19$$
$$\Rightarrow$$ $$\cos { \theta } =\cfrac { 19 }{ 7\times 3 } $$
$$\Rightarrow$$ $$\theta=\cos ^{ -1 }{ \left( \cfrac { 19 }{ 21 } \right) } $$
(ii)
The given lines are parallel to the vectors,
$$\vec { { b }_{ 1 } } =\left( \hat { i } -\hat { j } -2\hat { k } \right) $$ and $$\vec { { b }_{ 2 } } =\left( 3\hat { i } -5\hat { j } -4\hat { k } \right) $$ respectively.
$$\therefore$$ $$\left| \vec { { b }_{ 1 } } \right|=\sqrt { { \left( 1 \right) }^{ 2 }+{ \left( -1 \right) }^{ 2 }+{ \left( -2 \right) }^{ 2 } } =\sqrt { 6 } $$
$$\left| \vec { { b }_{ 2} } \right| =\sqrt { { \left( 3 \right) }^{ 2 }+{ \left( -5 \right) }^{ 2 }+{ \left( -4 \right) }^{ 2 } } =5\sqrt { 2 } $$
$$\vec { { b}_{ 1 } } .\vec { { b }_{ 2 } } =\left( \hat { i } -\hat { j } -2\hat {k } \right) .\left( 3\hat { i } -5\hat { j } -4\hat { k } \right) $$
$$1.3-1(-5)-2(-4)=3+5+8=16$$
If $$\theta$$ is the angle between the given lines then,
$$\cos{ \theta } =\left| \cfrac { \vec { { b }_{ 1 } } .\vec { { b }_{ 2 } } }{ \left| \vec { { b }_{ 1 } } \right| \left| \vec { { b }_{ 2 } } \right| } \right| $$
$$\Rightarrow$$ $$\cos { \theta } =\cfrac { 16 }{ \sqrt { 6 } .5\sqrt { 2 } } =\cfrac { 16 }{ \sqrt { 2 } .\sqrt { 3 } .5\sqrt { 2 } } =\cfrac { 16 }{ 10\sqrt { 3 } } $$
$$\Rightarrow$$ $$\cos { \theta } =\cfrac { 8 }{ 5\sqrt { 3 } } $$
$$\Rightarrow$$ $$\theta=\cos ^{ -1 }{ \left( \cfrac { 8 }{ 5\sqrt { 3 } } \right) } $$
The angle made by line $$r[cos \theta - \sqrt{3} sin \theta ]=5$$ with initial line is
The acute angle between two lines whose direction ratios are $$2,3,6$$ and $$1,2,2$$ is
If $$(2, -1, 2)$$ and $$(K, 3, 5)$$ are the triads of direction ratios of two lines and the angle between them is $$45^{\circ}$$, then a value of $$K$$ is
Find the angle between the two straight lines whose direction cosines are given by $$2l+2m-n=0$$ and $$mn+nl+lm=0$$.
If the angle between the lines, $$\displaystyle\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$$ and $$\displaystyle\frac{5-x}{-2}=\frac{7y-14}{P}=\frac{z-3}{4}$$ is $$\cos^{-1}\displaystyle \left(\frac{2}{3}\right)$$, then p is equal to?
Find the angle between the following pairs of lines: $$\vec {r} = 3\hat {i} + \hat {j} - 2\hat {k} + \lambda (\hat {i} + \hat {j} - 2\hat {k})$$ and $$\vec {r} = 2\hat {i} - \hat {j} - 56\hat {k} + \mu (3\hat {i} - 5\hat {j} - 4\hat {k})$$.
Find the angle between the following pair of lines: (i) $$\cfrac{x-2}{2}=\cfrac{y-1}{5}=\cfrac{z+3}{-3}$$ and $$\cfrac{x+2}{-1}=\cfrac{y-4}{8}=\cfrac{z-5}{4}$$ (ii) $$\cfrac{x}{2}=\cfrac{y}{2}=\cfrac{z}{1}$$ and $$\cfrac{x-5}{4}=\cfrac{y-2}{1}=\cfrac{z-3}{8}$$
The angle between the following pair of lines: $$\cfrac{x}{2}=\cfrac{y}{2}=\cfrac{z}{1}$$ and $$\cfrac{x-5}{4}=\cfrac{y-2}{1}=\cfrac{z-3}{8}$$ is $$\theta = \cos^{-1}\dfrac{a}{3}$$ then $$a=$$
Find the values of $$p$$ so the line $$\cfrac{1-x}{3}=\cfrac{7y-14}{2p}=\cfrac{z-3}{2}$$ and $$\cfrac{7-7x}{3p}=\cfrac{y-5}{1}=\cfrac{6-z}{5}$$ are at right angles.
Find the angle between the lines whose direction ratios are $$a,b,c$$ and $$b-c, c-a, a-b$$