3D Geometry
The angle made by line $$r[cos \theta - \sqrt{3} sin \theta ]=5$$ with initial line is
If the angle between the lines, $$\displaystyle\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$$ and $$\displaystyle\frac{5-x}{-2}=\frac{7y-14}{P}=\frac{z-3}{4}$$ is $$\cos^{-1}\displaystyle \left(\frac{2}{3}\right)$$, then p is equal to?
Above formula is used to find angle $$\theta$$ between two lines having direction ratios $$a_1,b_1,c_1$$ and $$a_2,b_2,c_2$$
Now let us find the direction cosines of the given lines
$$\dfrac{x}{2}=\dfrac{y}{2}=\dfrac{z}{1}$$ direction cosines are $$2,2,1$$
next line can also be written as
$$\dfrac{x-5}{2}=\dfrac{y-2}{\dfrac{P}{7}}=\dfrac{z-3}{4}$$
hence direction cosines are $$2,\dfrac{P}7,4$$
and we know that $$cos\theta=\dfrac23$$
Keeping the value of these cosines in above formula we get
$$\dfrac{2}{3}=\left|\dfrac{2\times 2+2\times \dfrac{P}{7}+1\times 4}{\sqrt{2^2+2^2+1^2}\sqrt{2^2+\dfrac{P^2}{49}+4^2}}\right|=\dfrac{8+\dfrac{2P}{7}+4}{3\times \sqrt{2^2+\dfrac{P^2}{49}+4^2}}$$
after cross multiplication we get
$$\Rightarrow \left(4+\dfrac{P}{7}\right)^2=20+\dfrac{P^2}{49}$$
$$\Rightarrow 16+\dfrac{8P}{7}+\dfrac{P^2}{49}=20+\dfrac{P^2}{49}$$
$$\Rightarrow \dfrac{8P}{7}=4$$
$$\Rightarrow P=\dfrac{7}{2}$$
Therefore Answer is $$D$$
The angle made by line $$r[cos \theta - \sqrt{3} sin \theta ]=5$$ with initial line is
The acute angle between two lines whose direction ratios are $$2,3,6$$ and $$1,2,2$$ is
If $$(2, -1, 2)$$ and $$(K, 3, 5)$$ are the triads of direction ratios of two lines and the angle between them is $$45^{\circ}$$, then a value of $$K$$ is
Find the angle between the two straight lines whose direction cosines are given by $$2l+2m-n=0$$ and $$mn+nl+lm=0$$.
Find the angle between the following pair of lines: (i) $$\vec { r } =2\hat { i } -5\hat { j } +\hat { k } +\lambda \left( 3\hat { i } -2\hat { j } +6\hat { k } \right) $$ and $$\vec { r } =7\hat { i } -6\hat { k } +\mu \left( \hat { i } +2\hat { j } +2\hat { k } \right) $$ (ii) $$\vec { r } =3\hat { i } +\hat { j } -2\hat { k } +\lambda \left( \hat { i } -\hat { j } -2\hat { k } \right) $$ and $$\vec { r } =2\hat { i } -\hat { j } -56\hat { k } +\mu \left( \hat { 3i } -5\hat { j } -4\hat { k } \right) $$
Find the angle between the following pairs of lines: $$\vec {r} = 3\hat {i} + \hat {j} - 2\hat {k} + \lambda (\hat {i} + \hat {j} - 2\hat {k})$$ and $$\vec {r} = 2\hat {i} - \hat {j} - 56\hat {k} + \mu (3\hat {i} - 5\hat {j} - 4\hat {k})$$.
Find the angle between the following pair of lines: (i) $$\cfrac{x-2}{2}=\cfrac{y-1}{5}=\cfrac{z+3}{-3}$$ and $$\cfrac{x+2}{-1}=\cfrac{y-4}{8}=\cfrac{z-5}{4}$$ (ii) $$\cfrac{x}{2}=\cfrac{y}{2}=\cfrac{z}{1}$$ and $$\cfrac{x-5}{4}=\cfrac{y-2}{1}=\cfrac{z-3}{8}$$
The angle between the following pair of lines: $$\cfrac{x}{2}=\cfrac{y}{2}=\cfrac{z}{1}$$ and $$\cfrac{x-5}{4}=\cfrac{y-2}{1}=\cfrac{z-3}{8}$$ is $$\theta = \cos^{-1}\dfrac{a}{3}$$ then $$a=$$
Find the values of $$p$$ so the line $$\cfrac{1-x}{3}=\cfrac{7y-14}{2p}=\cfrac{z-3}{2}$$ and $$\cfrac{7-7x}{3p}=\cfrac{y-5}{1}=\cfrac{6-z}{5}$$ are at right angles.
Find the angle between the lines whose direction ratios are $$a,b,c$$ and $$b-c, c-a, a-b$$