3D Geometry
The angle made by line $$r[cos \theta - \sqrt{3} sin \theta ]=5$$ with initial line is
Find the angle between the two straight lines whose direction cosines are given by $$2l+2m-n=0$$ and $$mn+nl+lm=0$$.
Let the angle between the lines be $$\alpha$$
Given Direction cosines of two lines are $$
Also given that $$2 l+2 m-n=0\implies n=2 l+2 m\cdots(1)$$
$$m n+n l+l m=0\cdots(2)$$
$$\implies m(2 l+2 m)+l(2 l+2 m)+l m=0$$ $$(\because \text{from}(1)\ )$$
$$\implies 2 m^2+5 l m+2 l^2=0$$
$$\implies 2 m^2+4 l m+l m+2 l^2=0$$
$$\implies 2 m(m+2 l)+l(m+2 l)=0$$
$$\implies (2 m+l)(m+2 l)=0$$
$$\implies m=-\dfrac{l}{2},-2 l$$
$$n=2 l+2 m=2 l+2\bigg(-\dfrac{l}{2}\bigg),2 l+2(-2 l)=2 l-l,2 l-4 l=l,-2 l$$
So the direction cosines of two lines are $$
So the direction ratios will be $$<2,-1,2>$$ and $$<1,-2,-2>$$
As we know that
If $$\theta$$ is the angle between the two lines having direction ratios as $$$$ and $$
then $$\cos \theta=\dfrac{a d+be +c f}{\sqrt{a^2+b^2+c^2}\sqrt{d^2+e^2+f^2}}$$
Hence $$\cos \alpha=\dfrac{(2)(1)+(-1)(-2)+2(-2)}{\sqrt{2^2+(-1)^2+2^2}\sqrt{1^2+(-2)^2+(-2)^2}}=\dfrac{2+2-4}{3\times 3}=0$$
$$\implies \alpha=\dfrac{\pi}{2}$$
So the angle between the two lines is $$\dfrac{\pi}{2}$$
The angle made by line $$r[cos \theta - \sqrt{3} sin \theta ]=5$$ with initial line is
The acute angle between two lines whose direction ratios are $$2,3,6$$ and $$1,2,2$$ is
If $$(2, -1, 2)$$ and $$(K, 3, 5)$$ are the triads of direction ratios of two lines and the angle between them is $$45^{\circ}$$, then a value of $$K$$ is
If the angle between the lines, $$\displaystyle\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$$ and $$\displaystyle\frac{5-x}{-2}=\frac{7y-14}{P}=\frac{z-3}{4}$$ is $$\cos^{-1}\displaystyle \left(\frac{2}{3}\right)$$, then p is equal to?
Find the angle between the following pair of lines: (i) $$\vec { r } =2\hat { i } -5\hat { j } +\hat { k } +\lambda \left( 3\hat { i } -2\hat { j } +6\hat { k } \right) $$ and $$\vec { r } =7\hat { i } -6\hat { k } +\mu \left( \hat { i } +2\hat { j } +2\hat { k } \right) $$ (ii) $$\vec { r } =3\hat { i } +\hat { j } -2\hat { k } +\lambda \left( \hat { i } -\hat { j } -2\hat { k } \right) $$ and $$\vec { r } =2\hat { i } -\hat { j } -56\hat { k } +\mu \left( \hat { 3i } -5\hat { j } -4\hat { k } \right) $$
Find the angle between the following pairs of lines: $$\vec {r} = 3\hat {i} + \hat {j} - 2\hat {k} + \lambda (\hat {i} + \hat {j} - 2\hat {k})$$ and $$\vec {r} = 2\hat {i} - \hat {j} - 56\hat {k} + \mu (3\hat {i} - 5\hat {j} - 4\hat {k})$$.
Find the angle between the following pair of lines: (i) $$\cfrac{x-2}{2}=\cfrac{y-1}{5}=\cfrac{z+3}{-3}$$ and $$\cfrac{x+2}{-1}=\cfrac{y-4}{8}=\cfrac{z-5}{4}$$ (ii) $$\cfrac{x}{2}=\cfrac{y}{2}=\cfrac{z}{1}$$ and $$\cfrac{x-5}{4}=\cfrac{y-2}{1}=\cfrac{z-3}{8}$$
The angle between the following pair of lines: $$\cfrac{x}{2}=\cfrac{y}{2}=\cfrac{z}{1}$$ and $$\cfrac{x-5}{4}=\cfrac{y-2}{1}=\cfrac{z-3}{8}$$ is $$\theta = \cos^{-1}\dfrac{a}{3}$$ then $$a=$$
Find the values of $$p$$ so the line $$\cfrac{1-x}{3}=\cfrac{7y-14}{2p}=\cfrac{z-3}{2}$$ and $$\cfrac{7-7x}{3p}=\cfrac{y-5}{1}=\cfrac{6-z}{5}$$ are at right angles.
Find the angle between the lines whose direction ratios are $$a,b,c$$ and $$b-c, c-a, a-b$$