Subjective Type

Find the angle between the two straight lines whose direction cosines are given by $$2l+2m-n=0$$ and $$mn+nl+lm=0$$.

Solution

Let the angle between the lines be $$\alpha$$

Given Direction cosines of two lines are $$$$

Also given that $$2 l+2 m-n=0\implies n=2 l+2 m\cdots(1)$$

$$m n+n l+l m=0\cdots(2)$$

$$\implies m(2 l+2 m)+l(2 l+2 m)+l m=0$$ $$(\because \text{from}(1)\ )$$

$$\implies 2 m^2+5 l m+2 l^2=0$$

$$\implies 2 m^2+4 l m+l m+2 l^2=0$$

$$\implies 2 m(m+2 l)+l(m+2 l)=0$$

$$\implies (2 m+l)(m+2 l)=0$$

$$\implies m=-\dfrac{l}{2},-2 l$$

$$n=2 l+2 m=2 l+2\bigg(-\dfrac{l}{2}\bigg),2 l+2(-2 l)=2 l-l,2 l-4 l=l,-2 l$$

So the direction cosines of two lines are $$$$ and $$$$

So the direction ratios will be $$<2,-1,2>$$ and $$<1,-2,-2>$$

As we know that

If $$\theta$$ is the angle between the two lines having direction ratios as $$$$ and $$$$
then $$\cos \theta=\dfrac{a d+be +c f}{\sqrt{a^2+b^2+c^2}\sqrt{d^2+e^2+f^2}}$$

Hence $$\cos \alpha=\dfrac{(2)(1)+(-1)(-2)+2(-2)}{\sqrt{2^2+(-1)^2+2^2}\sqrt{1^2+(-2)^2+(-2)^2}}=\dfrac{2+2-4}{3\times 3}=0$$

$$\implies \alpha=\dfrac{\pi}{2}$$

So the angle between the two lines is $$\dfrac{\pi}{2}$$


SIMILAR QUESTIONS

3D Geometry

The angle made by line $$r[cos \theta - \sqrt{3} sin \theta ]=5$$ with initial line is

3D Geometry

The acute angle between two lines whose direction ratios are $$2,3,6$$ and $$1,2,2$$ is

3D Geometry

If $$(2, -1, 2)$$ and $$(K, 3, 5)$$ are the triads of direction ratios of two lines and the angle between them is $$45^{\circ}$$, then a value of $$K$$ is

3D Geometry

If the angle between the lines, $$\displaystyle\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$$ and $$\displaystyle\frac{5-x}{-2}=\frac{7y-14}{P}=\frac{z-3}{4}$$ is $$\cos^{-1}\displaystyle \left(\frac{2}{3}\right)$$, then p is equal to?

3D Geometry

Find the angle between the following pair of lines: (i) $$\vec { r } =2\hat { i } -5\hat { j } +\hat { k } +\lambda \left( 3\hat { i } -2\hat { j } +6\hat { k } \right) $$ and $$\vec { r } =7\hat { i } -6\hat { k } +\mu \left( \hat { i } +2\hat { j } +2\hat { k } \right) $$ (ii) $$\vec { r } =3\hat { i } +\hat { j } -2\hat { k } +\lambda \left( \hat { i } -\hat { j } -2\hat { k } \right) $$ and $$\vec { r } =2\hat { i } -\hat { j } -56\hat { k } +\mu \left( \hat { 3i } -5\hat { j } -4\hat { k } \right) $$

3D Geometry

Find the angle between the following pairs of lines: $$\vec {r} = 3\hat {i} + \hat {j} - 2\hat {k} + \lambda (\hat {i} + \hat {j} - 2\hat {k})$$ and $$\vec {r} = 2\hat {i} - \hat {j} - 56\hat {k} + \mu (3\hat {i} - 5\hat {j} - 4\hat {k})$$.

3D Geometry

Find the angle between the following pair of lines: (i) $$\cfrac{x-2}{2}=\cfrac{y-1}{5}=\cfrac{z+3}{-3}$$ and $$\cfrac{x+2}{-1}=\cfrac{y-4}{8}=\cfrac{z-5}{4}$$ (ii) $$\cfrac{x}{2}=\cfrac{y}{2}=\cfrac{z}{1}$$ and $$\cfrac{x-5}{4}=\cfrac{y-2}{1}=\cfrac{z-3}{8}$$

3D Geometry

The angle between the following pair of lines: $$\cfrac{x}{2}=\cfrac{y}{2}=\cfrac{z}{1}$$ and $$\cfrac{x-5}{4}=\cfrac{y-2}{1}=\cfrac{z-3}{8}$$ is $$\theta = \cos^{-1}\dfrac{a}{3}$$ then $$a=$$

3D Geometry

Find the values of $$p$$ so the line $$\cfrac{1-x}{3}=\cfrac{7y-14}{2p}=\cfrac{z-3}{2}$$ and $$\cfrac{7-7x}{3p}=\cfrac{y-5}{1}=\cfrac{6-z}{5}$$ are at right angles.

3D Geometry

Find the angle between the lines whose direction ratios are $$a,b,c$$ and $$b-c, c-a, a-b$$

Contact Details